Surfaces, puzzles and moduli spaces

Hugo Parlier, University of Luxembourg

Collaborators

Paul Turner

Mario Guttierez

Mark Bell

Lionel Pournin

Distances between cube configurations

The distance between

and

is the minimal number of moves between them

Vertices = configurations

Edges = elementary moves (face rotations)

Understand the geometry (size, shape, ...) of this configuration space.

Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2011) The diameter of the (3 by 3 by 3) Rubik's cube graph is 20.

<u>Theorem</u> (Demaine-Demaine-Eisenstat-Lubiw-Winslow)

The diameter of the n by n by n Rubik's cube graph grows like $n^2/\log(n)$.

But what do Rubik's cube graphs look like?

The 3 by 3 by 3 has 43,252,003,274,489,856,000 vertices.

The 2 by 2 by 2 has 3,674,160 vertices.

The only Rubik's cube graph successfully visualized.

Fact
The diameter of the 3 by 3 Chroma-square graph is 6.

Theorem (P.-Turner)

The diameter of the n by n Chroma-square graph grows like n^2 .

Theorem (P.-Turner)

The diameter of the n by n Chroma-square graph grows like n^2 .

Theorem (P.-Turner)

The diameter of the n by n Chroma-square graph grows like n^2 .

Fun facts about arbitrary colorings

- If there are at least 2 square tiles of the same color, the graph is connected.
- Diameter grows at most like n² for any coloring.

FIGURE 4. The rotation graph of a hexagon, RG(6).

Flip graphs of polygons (Sleator-Tarjan-Thurston, 1988)

Vertices are triangulations and edges come from flipping

diagonals:

FIGURE 4. The rotation graph of a hexagon, RG(6).

Theorem (Sleator-Tarjan-Thurston)

For sufficiently large n, the diameter of the flip graph of an n-gon is 2n-10.

FIGURE 4. The rotation graph of a hexagon, RG(6).

Theorem (Pournin)

For n>12 the diameter of the flip graph of an n-gon is 2n-10.

Visualizing Flip Graphs

With Mark Bell and Lionel Pournin

All visualizations made using Gephi and a visualization algorithm of Yifan Hu.

Visualizing Flip Graphs

The flip graphs of n-gons for n=5, 7 and 9

Flip Graphs of one-holed tori

Theorem (P.-Pournin)

The diameter of the flip graph of a torus with n>0 boundary vertices is somewhere between 5n/2 and 23n/8.

Torus flip graphs

Puzzle graphs for square tiled translation surfaces

With Mario Guttierez and Paul Turner

Math talks invariably bring joy. Sometimes it is when they end.

