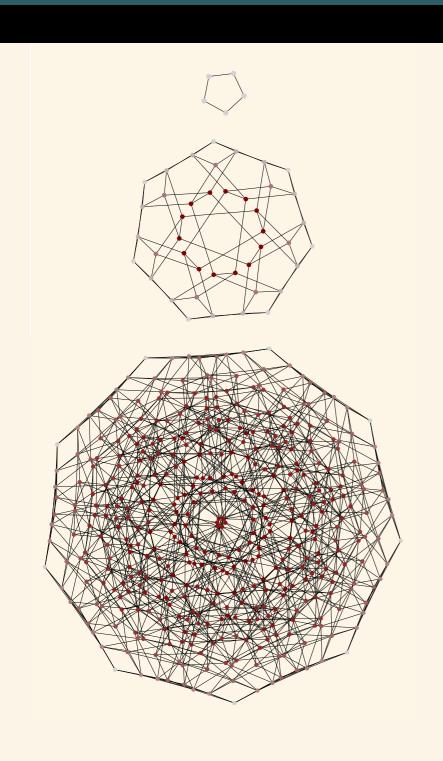
Surfaces, puzzles and moduli spaces



Hugo Parlier, University of Luxembourg

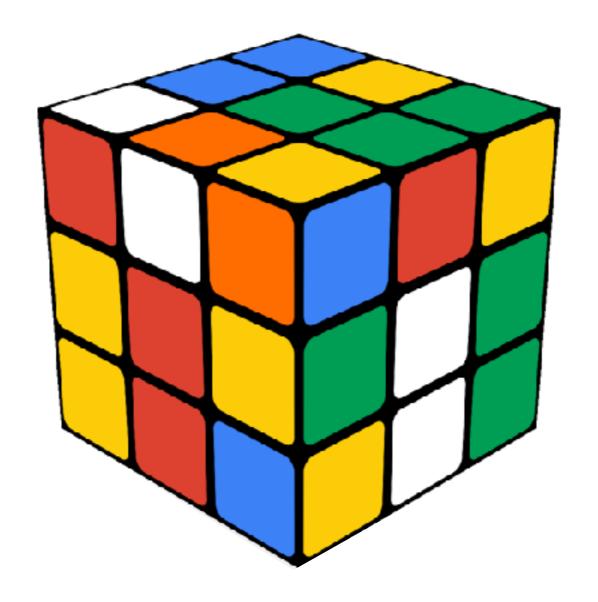
Collaborators

Paul Turner

Mario Guttierez

Mark Bell

Lionel Pournin

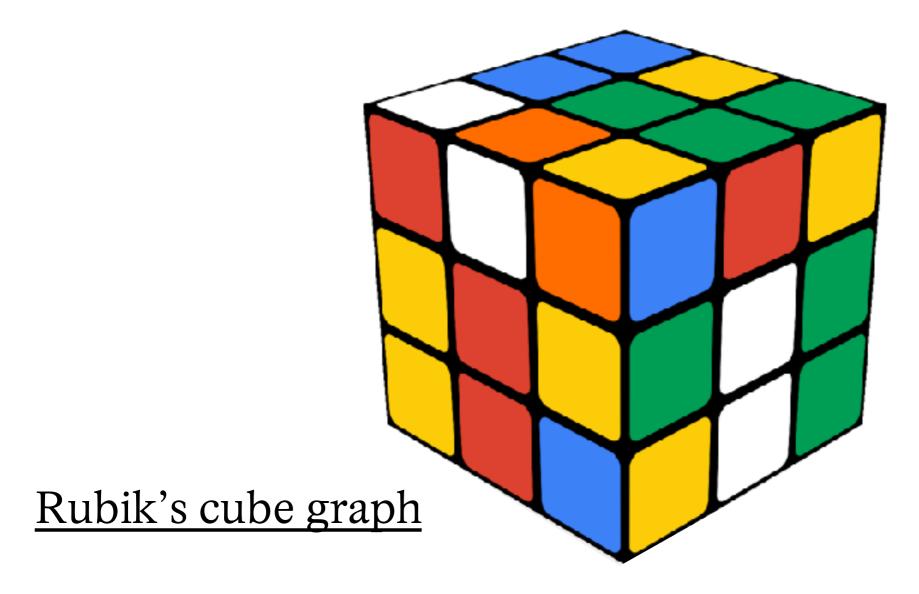


Distances between cube configurations

The distance between

and

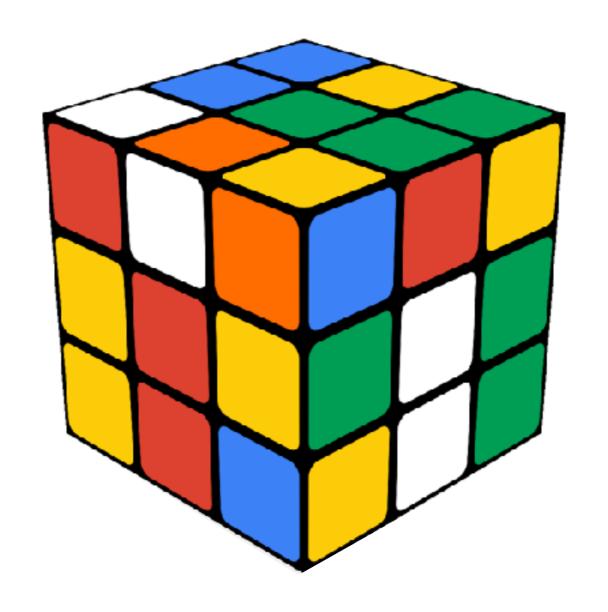
is the minimal number of moves between them



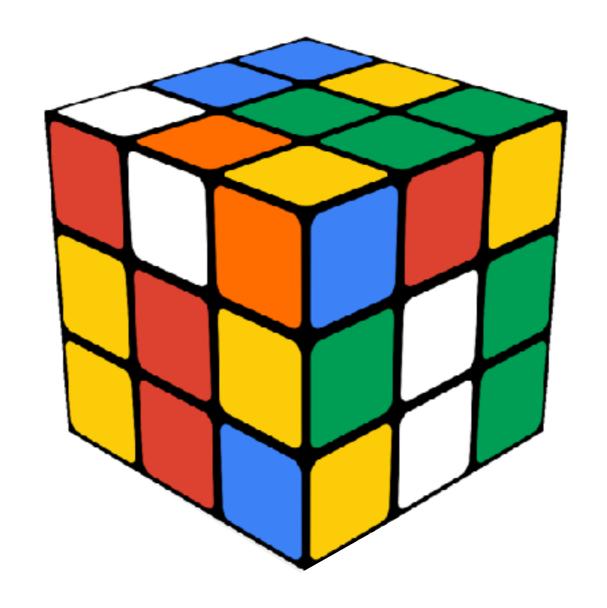
Vertices = configurations

Edges = elementary moves (face rotations)

Understand the geometry (size, shape, ...) of this configuration space.

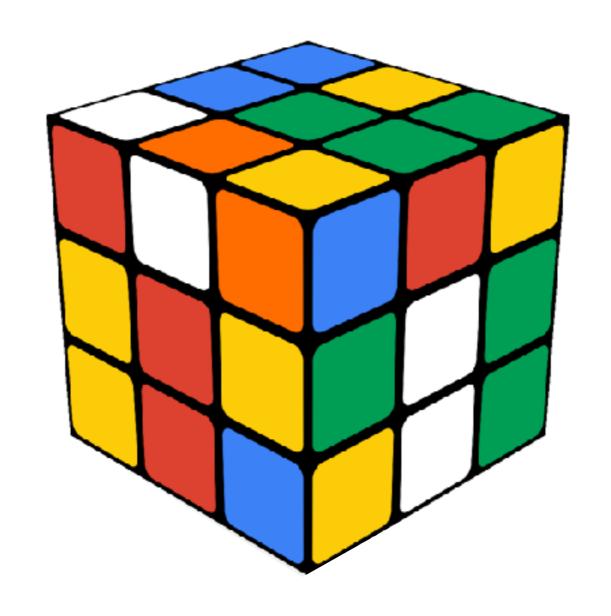


Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2011) The diameter of the (3 by 3 by 3) Rubik's cube graph is 20.



<u>Theorem</u> (Demaine-Demaine-Eisenstat-Lubiw-Winslow)

The diameter of the n by n by n Rubik's cube graph grows like $n^2/\log(n)$.

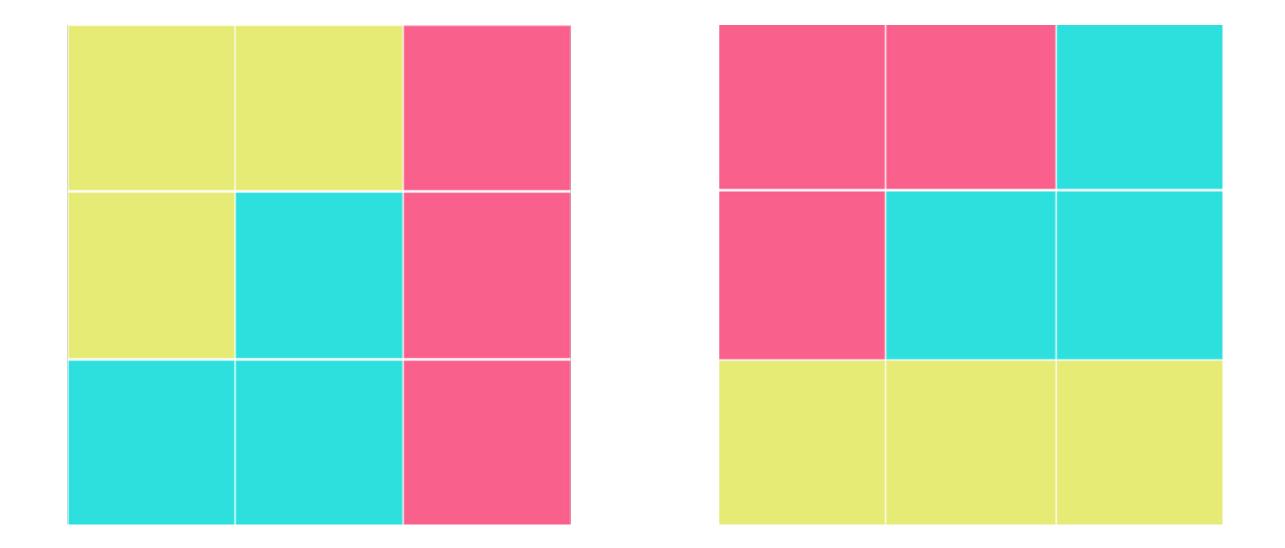


But what do Rubik's cube graphs look like?

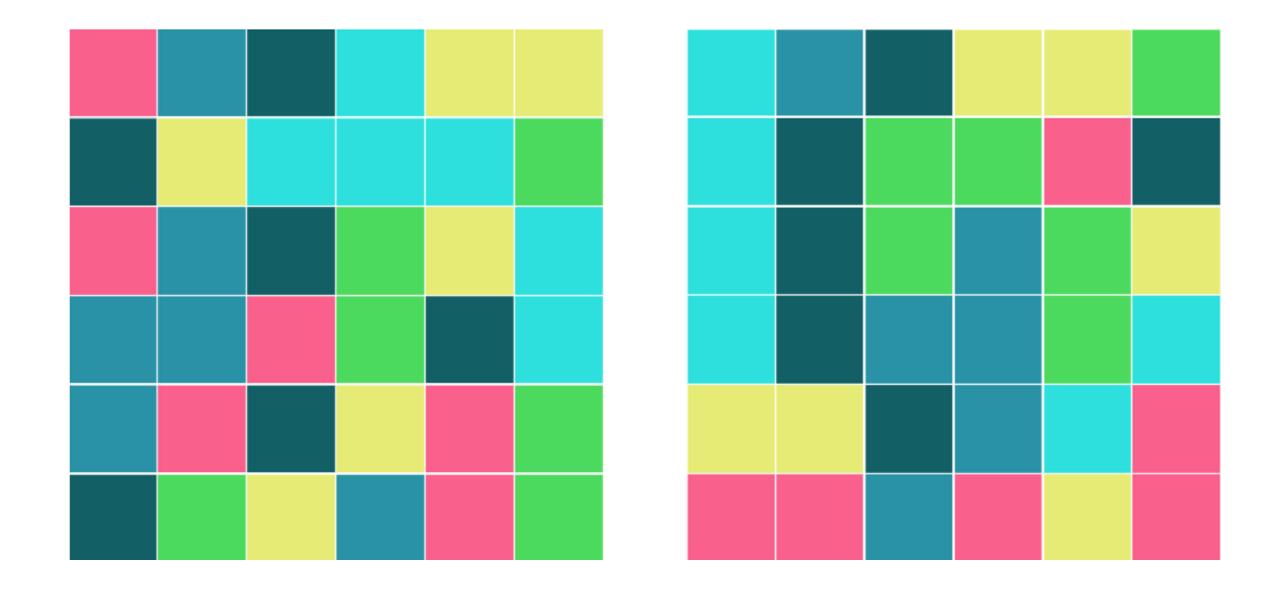
The 3 by 3 by 3 has 43,252,003,274,489,856,000 vertices.

The 2 by 2 by 2 has 3,674,160 vertices.

The only Rubik's cube graph successfully visualized.

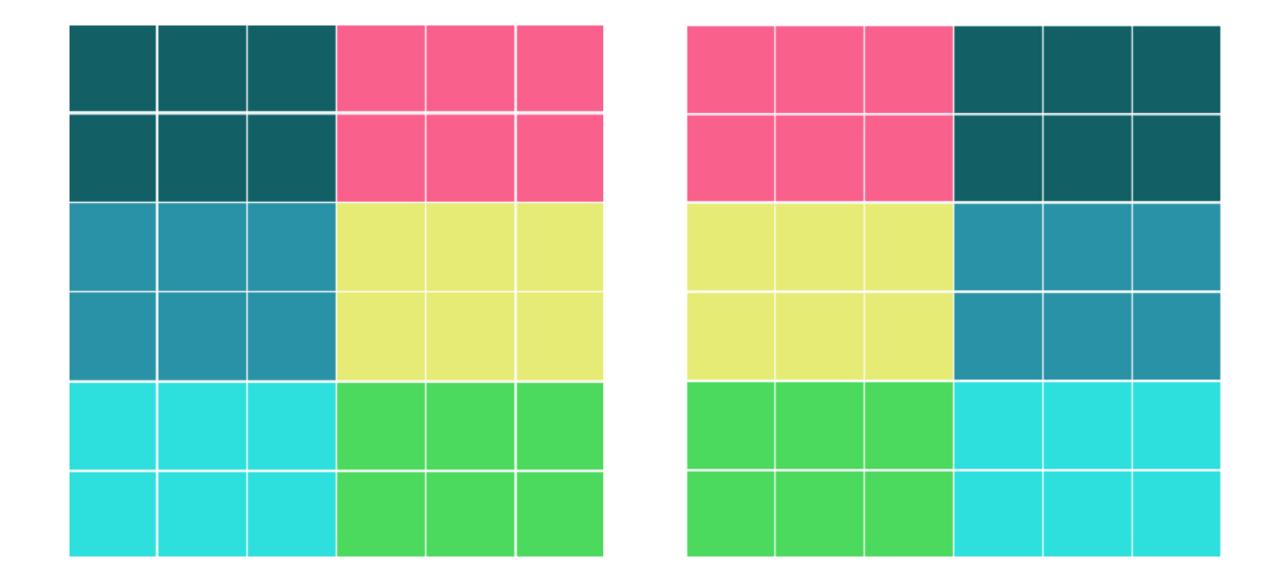


Fact
The diameter of the 3 by 3 Chroma-square graph is 6.



Theorem (P.-Turner)

The diameter of the n by n Chroma-square graph grows like n^2 .



Theorem (P.-Turner)

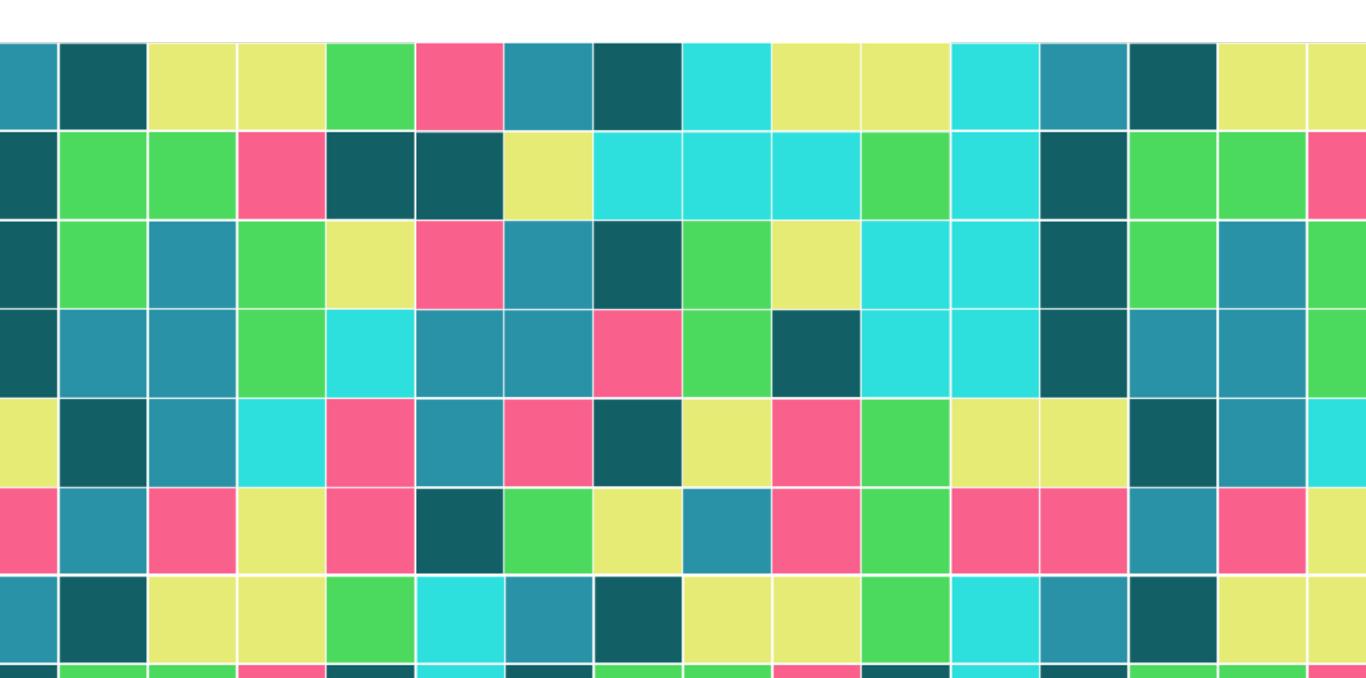
The diameter of the n by n Chroma-square graph grows like n^2 .

Theorem (P.-Turner)

The diameter of the n by n Chroma-square graph grows like n^2 .

Fun facts about arbitrary colorings

- If there are at least 2 square tiles of the same color, the graph is connected.
- Diameter grows at most like n² for any coloring.



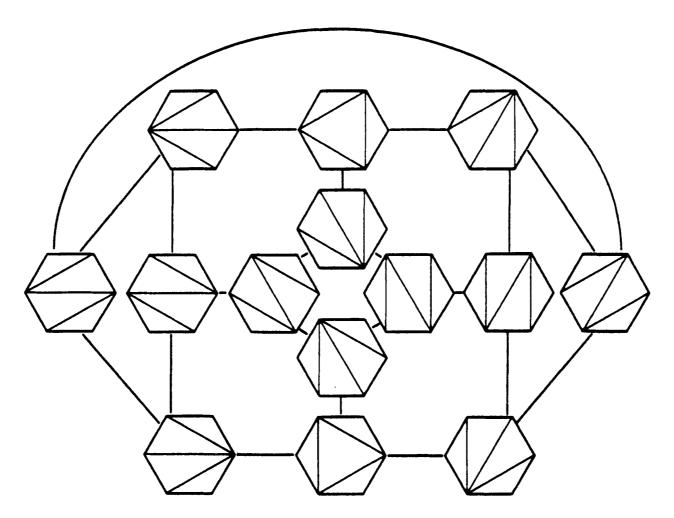


FIGURE 4. The rotation graph of a hexagon, RG(6).

Flip graphs of polygons (Sleator-Tarjan-Thurston, 1988)

Vertices are triangulations and edges come from flipping

diagonals:

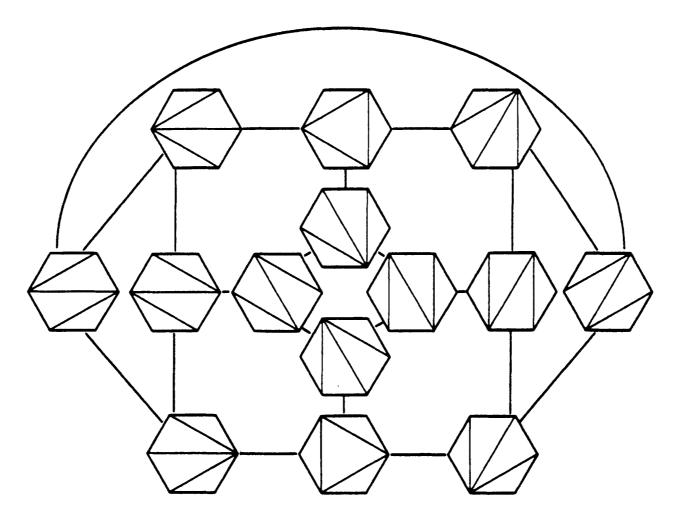


FIGURE 4. The rotation graph of a hexagon, RG(6).

Theorem (Sleator-Tarjan-Thurston)

For sufficiently large n, the diameter of the flip graph of an n-gon is 2n-10.

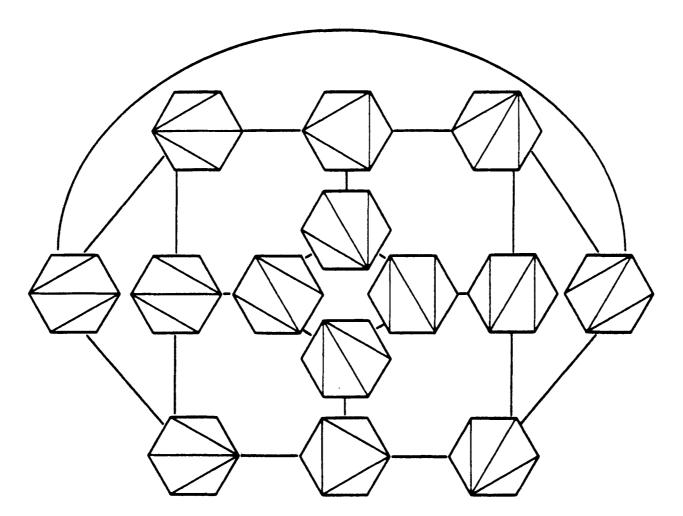


FIGURE 4. The rotation graph of a hexagon, RG(6).

Theorem (Pournin)

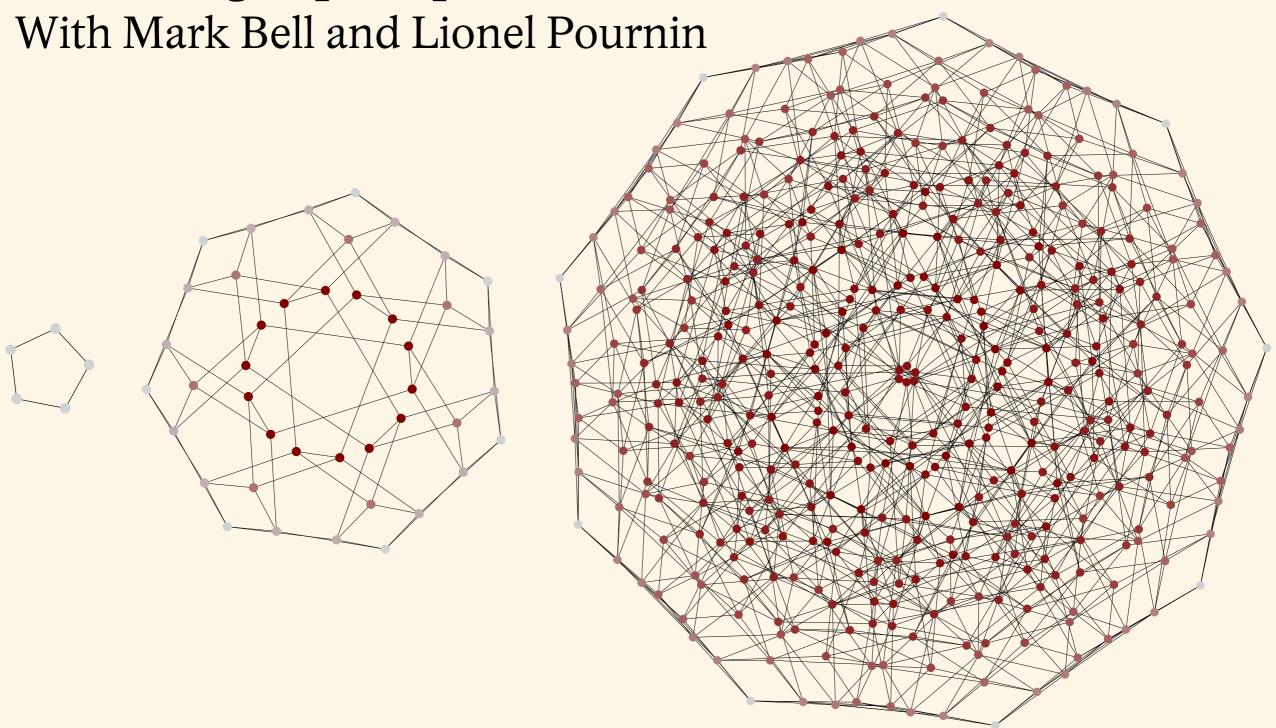
For n>12 the diameter of the flip graph of an n-gon is 2n-10.

Visualizing Flip Graphs

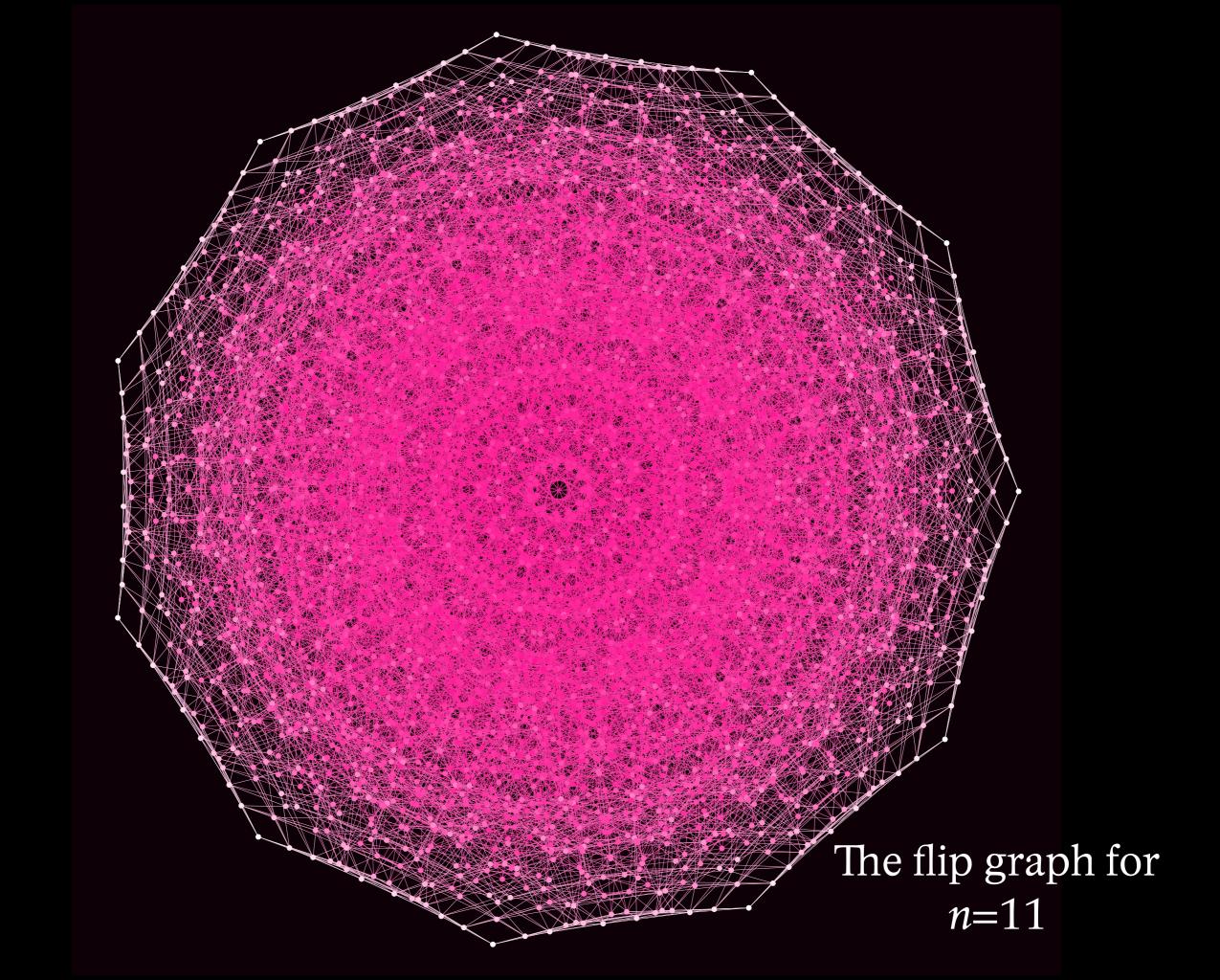
With Mark Bell and Lionel Pournin

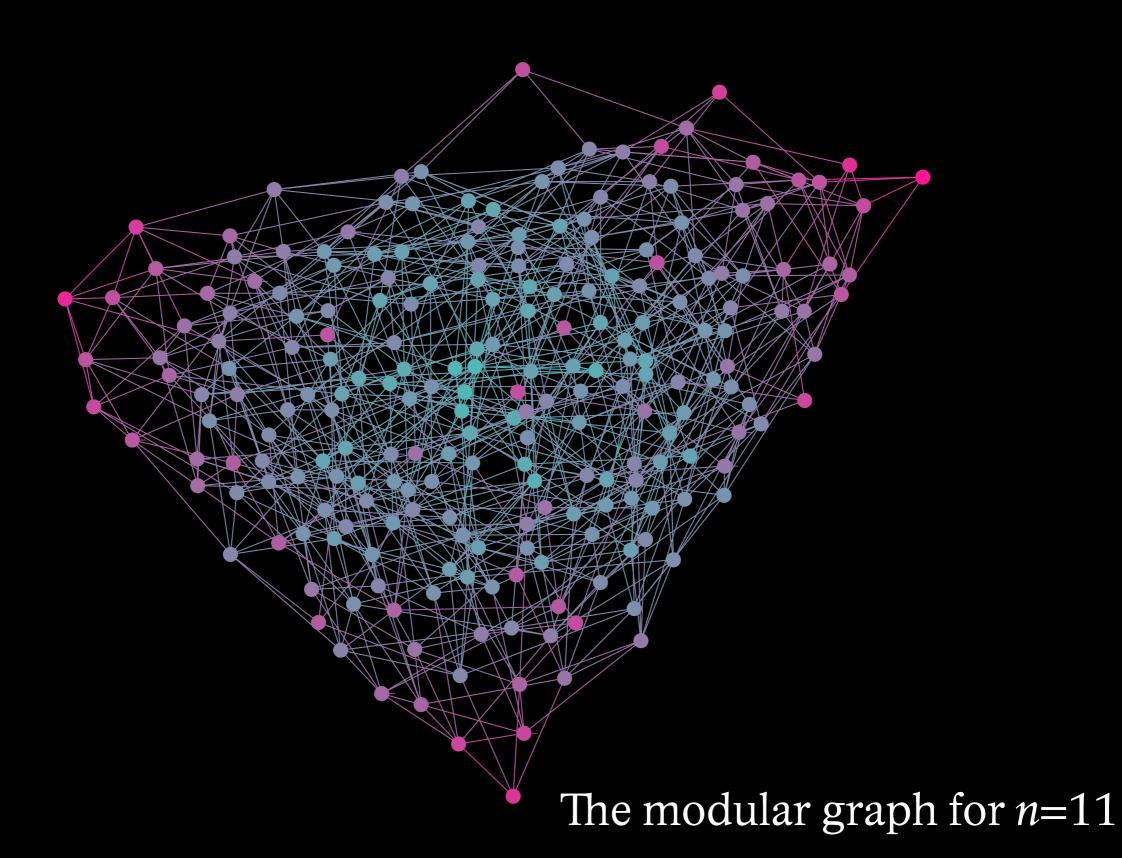
All visualizations made using Gephi and a visualization algorithm of Yifan Hu.

Visualizing Flip Graphs

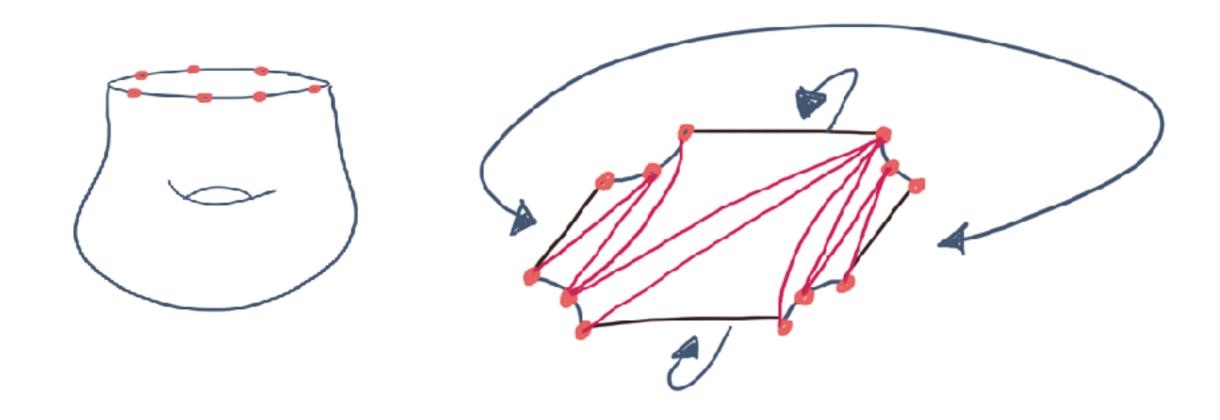


The flip graphs of n-gons for n=5, 7 and 9



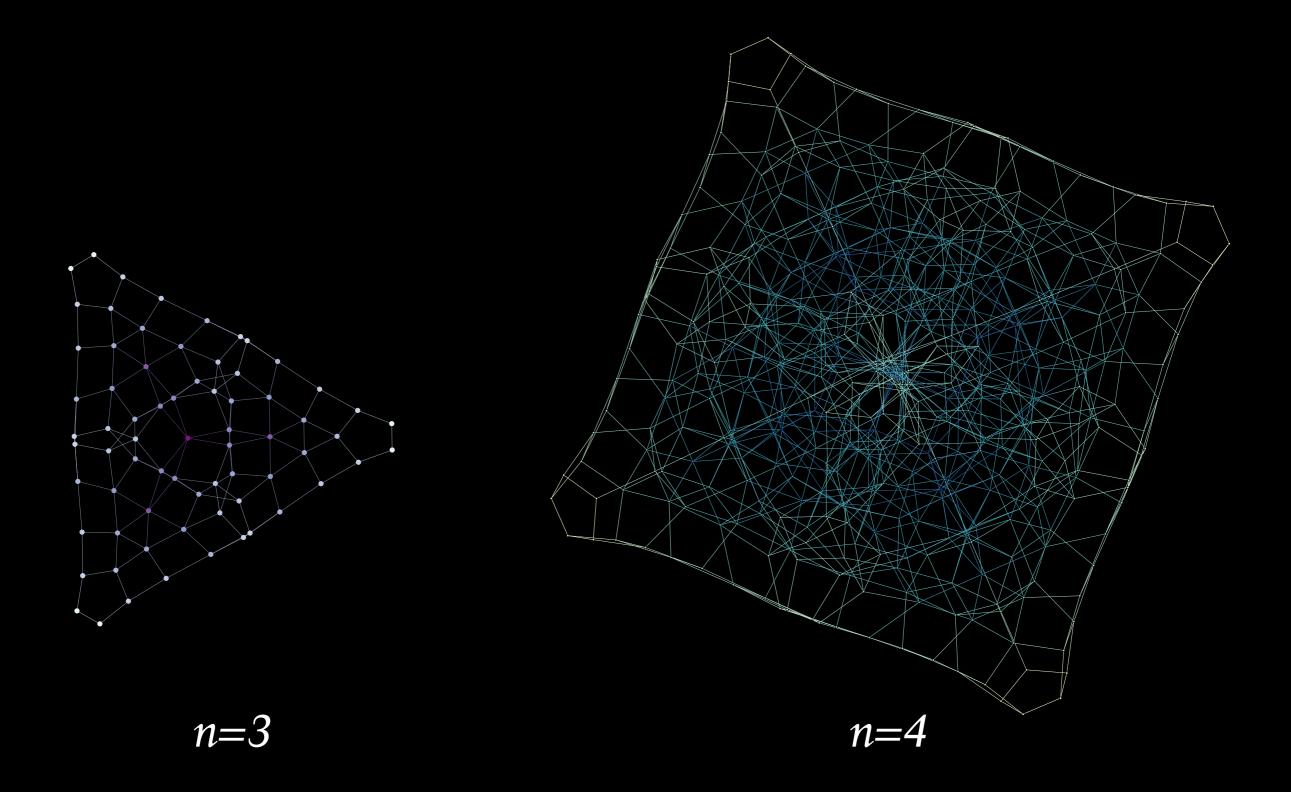


Flip Graphs of one-holed tori

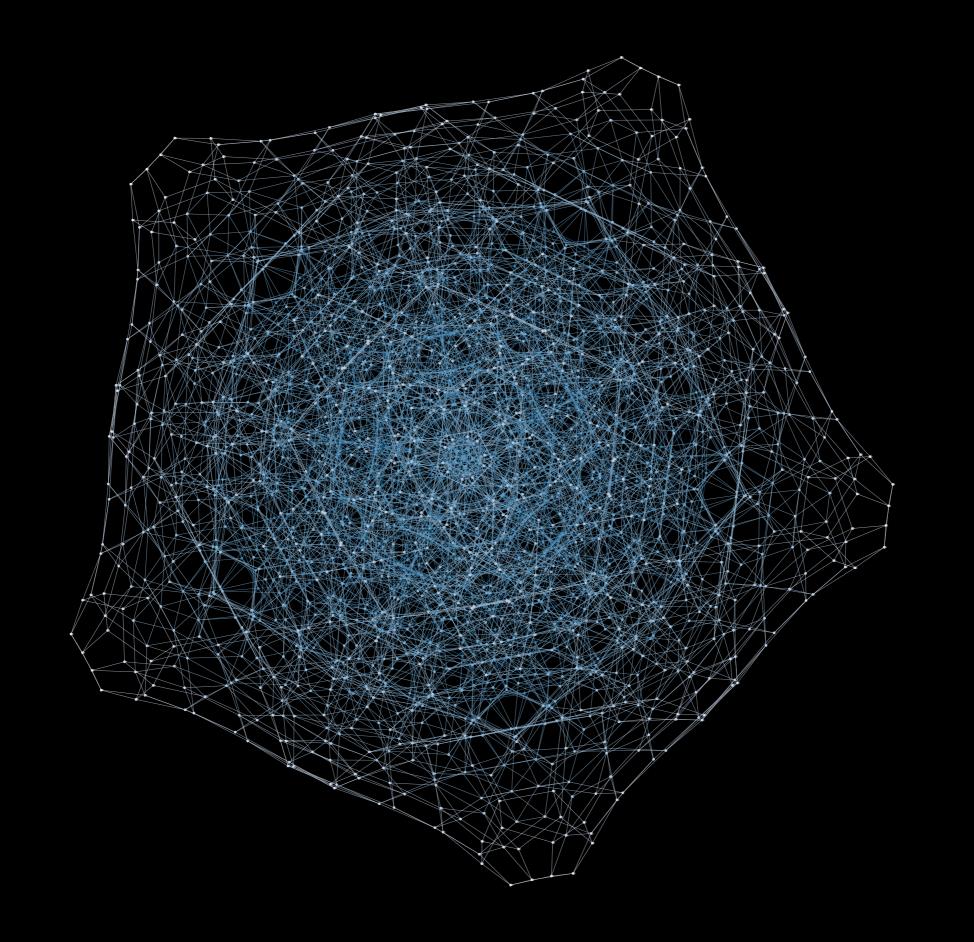


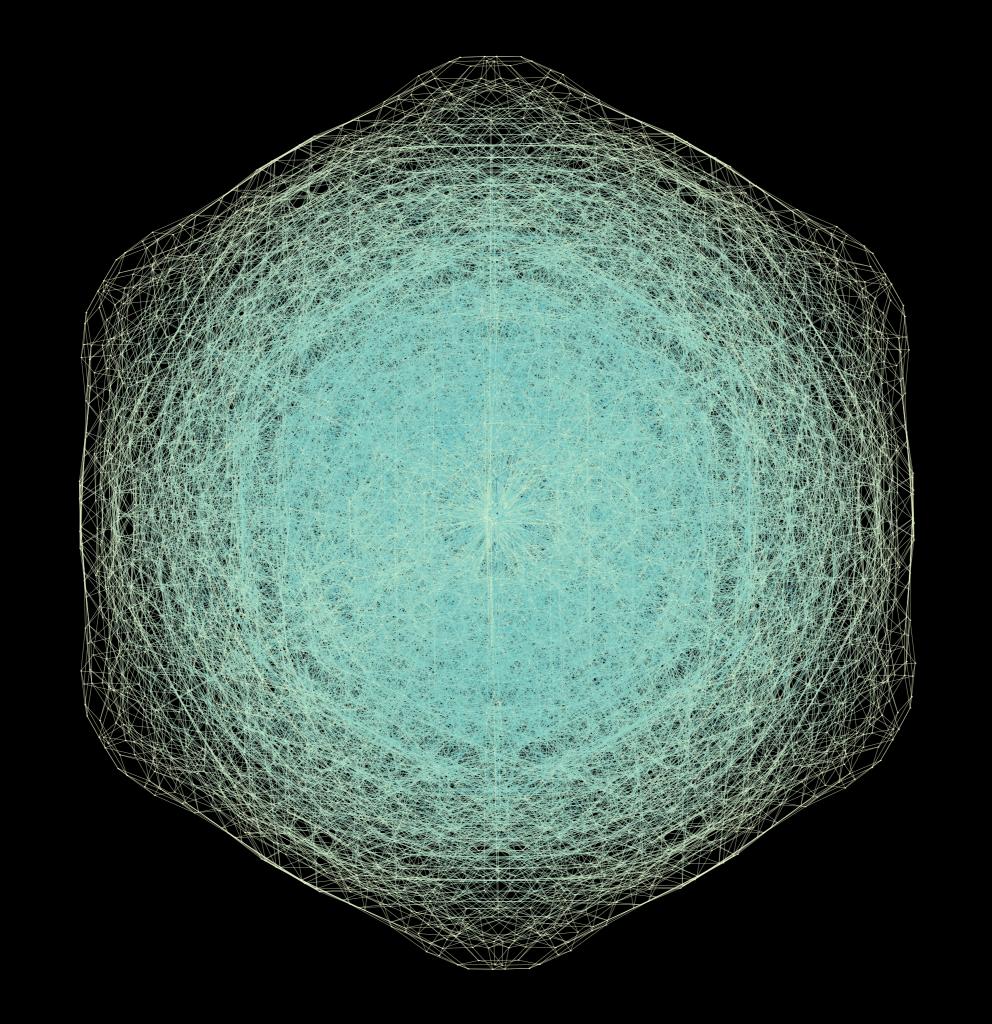
Theorem (P.-Pournin)

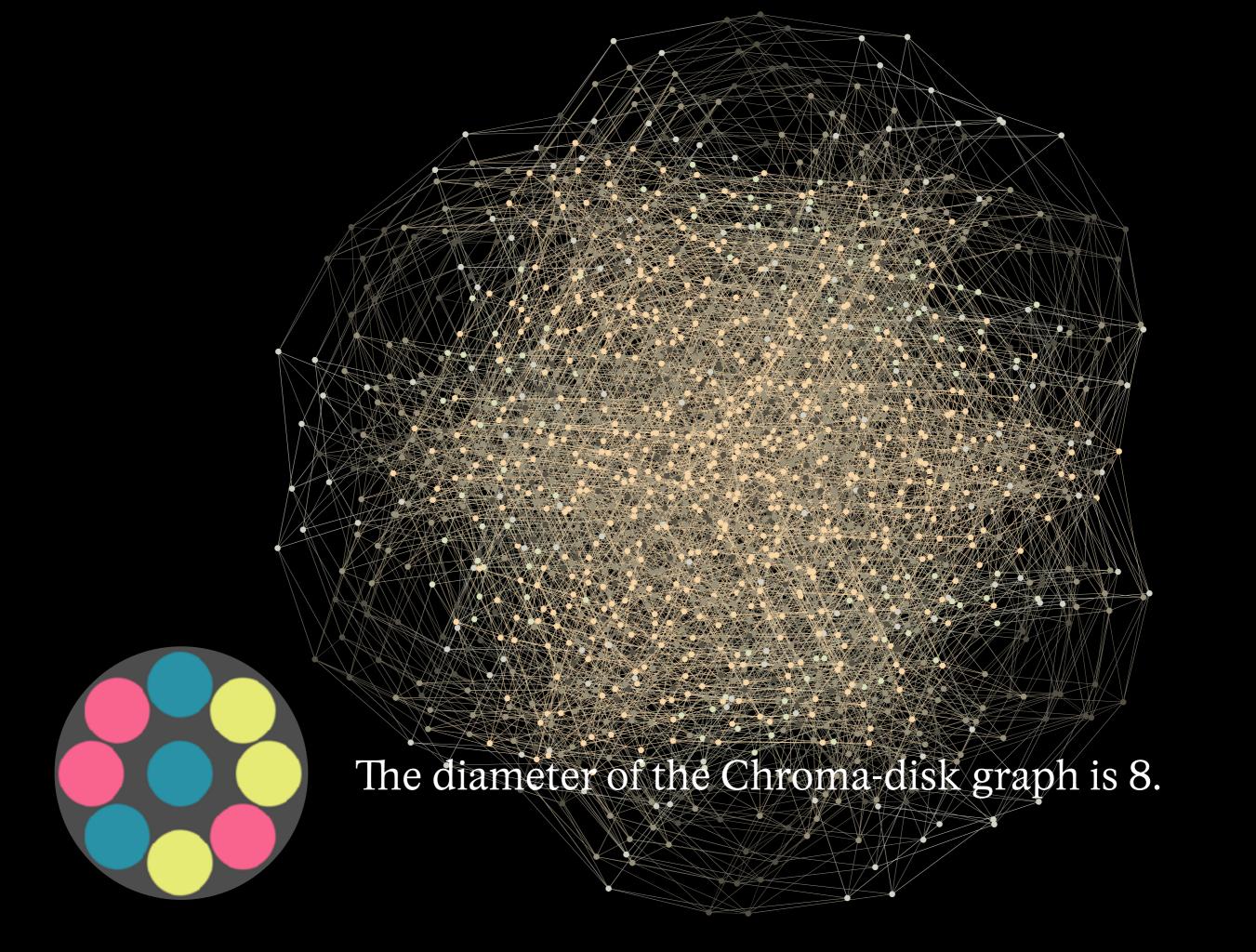
The diameter of the flip graph of a torus with n>0 boundary vertices is somewhere between 5n/2 and 23n/8.



Torus flip graphs

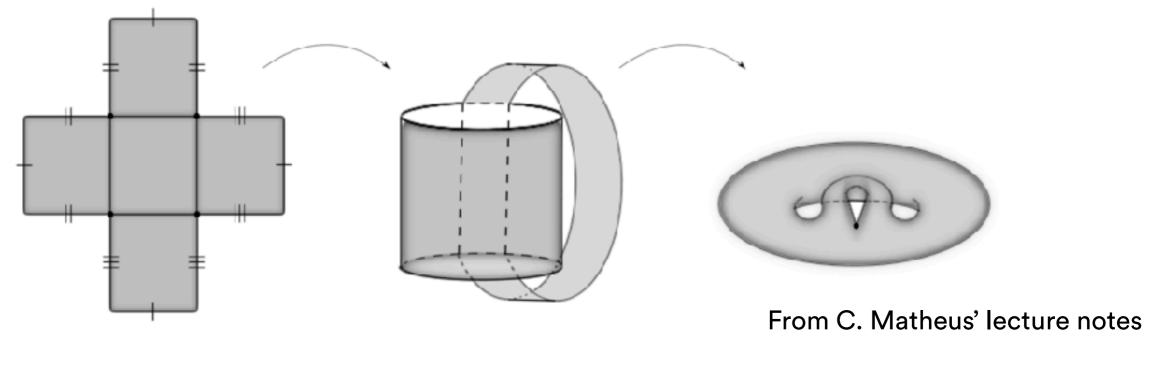


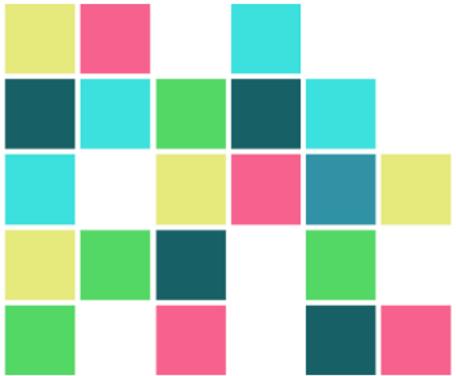


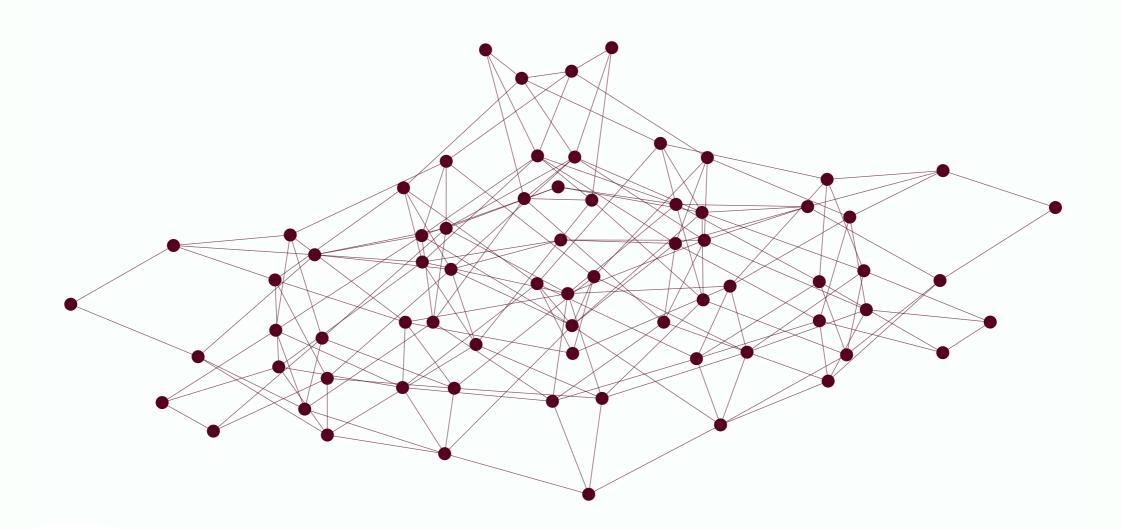


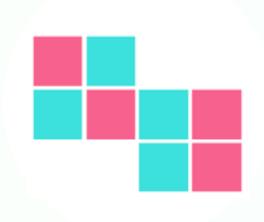
Puzzle graphs for square tiled translation surfaces

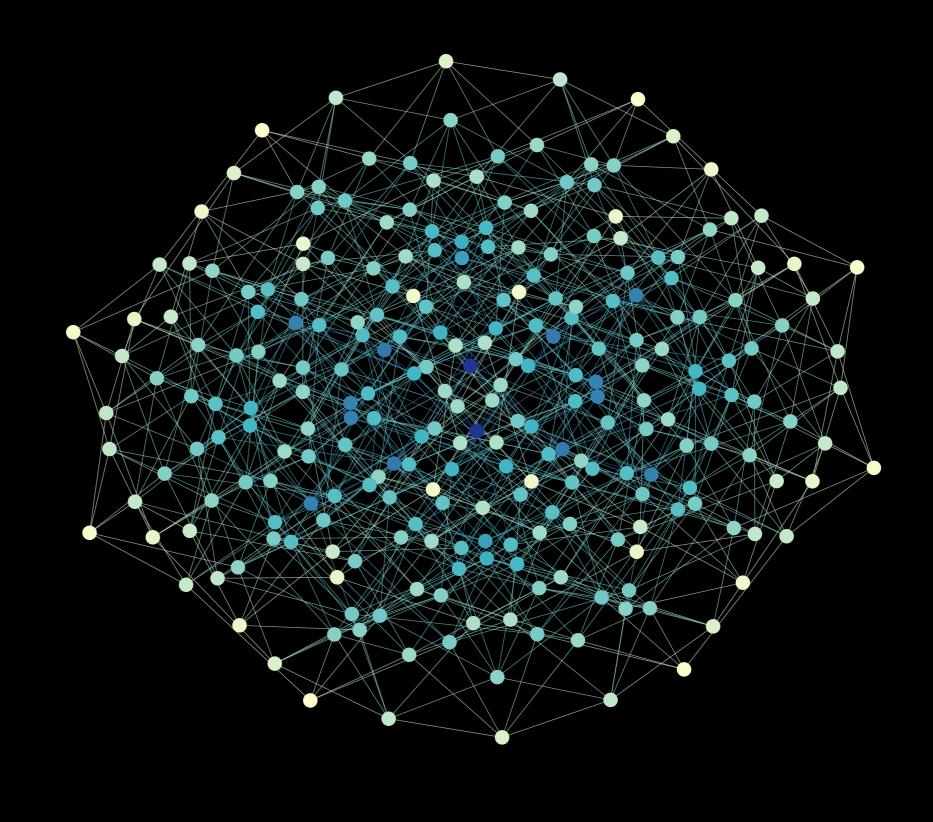
With Mario Guttierez and Paul Turner

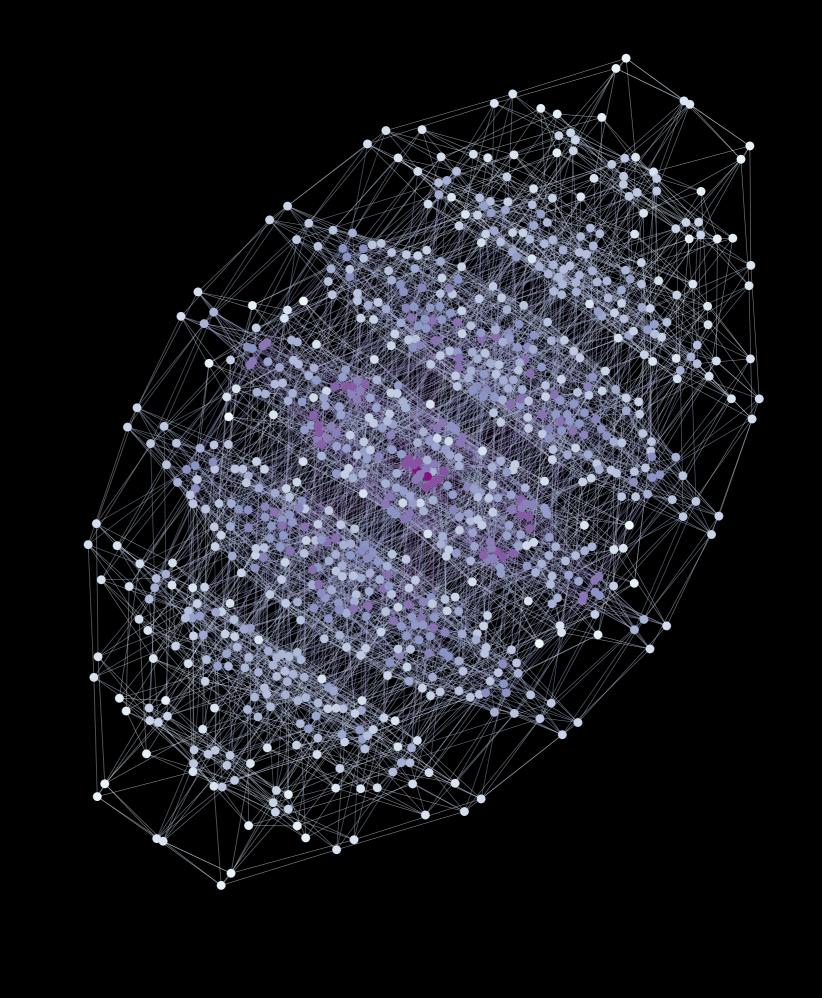


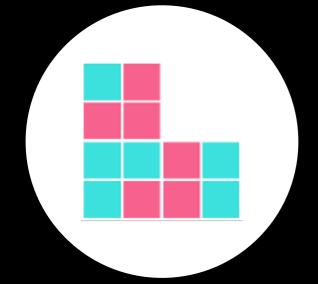


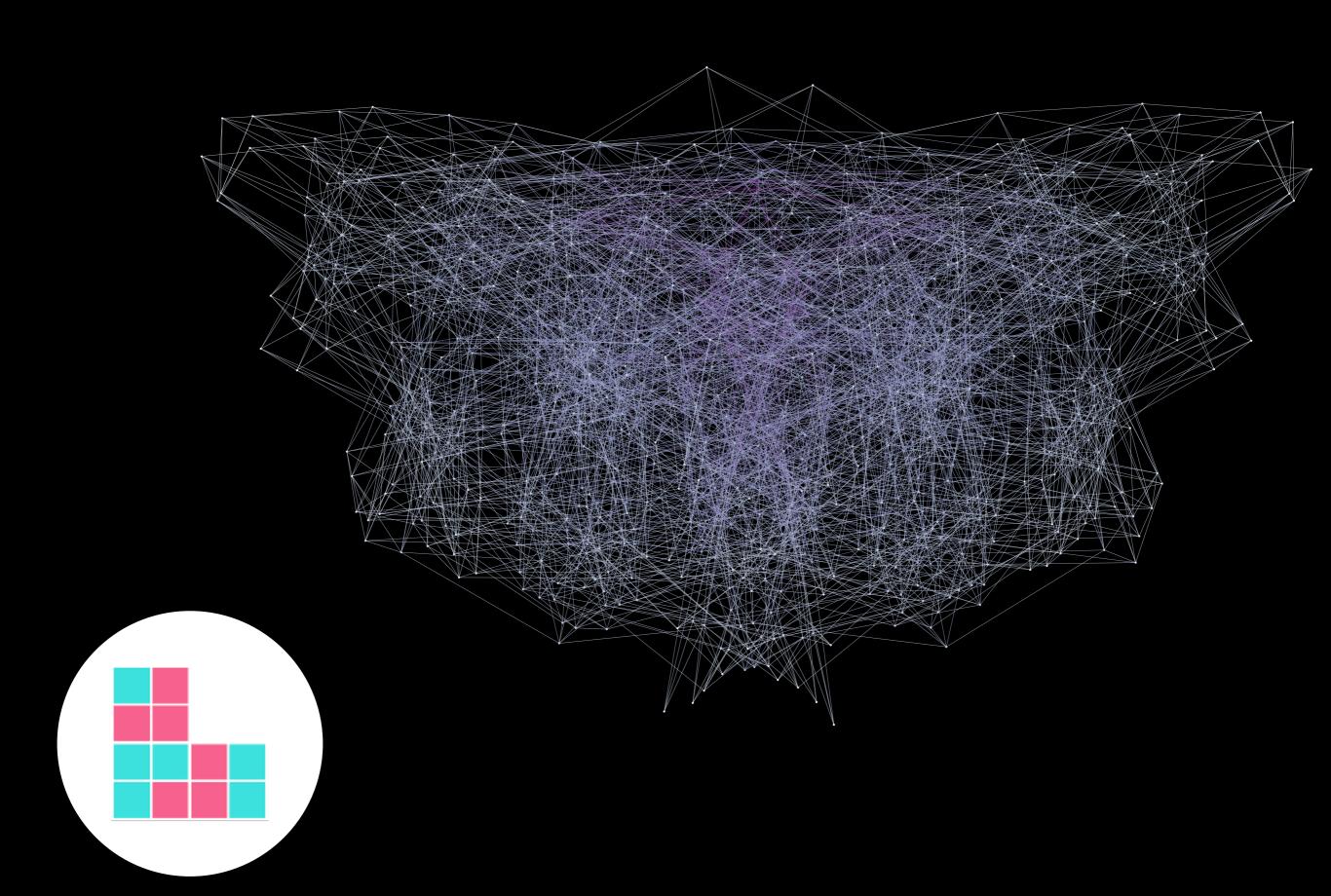


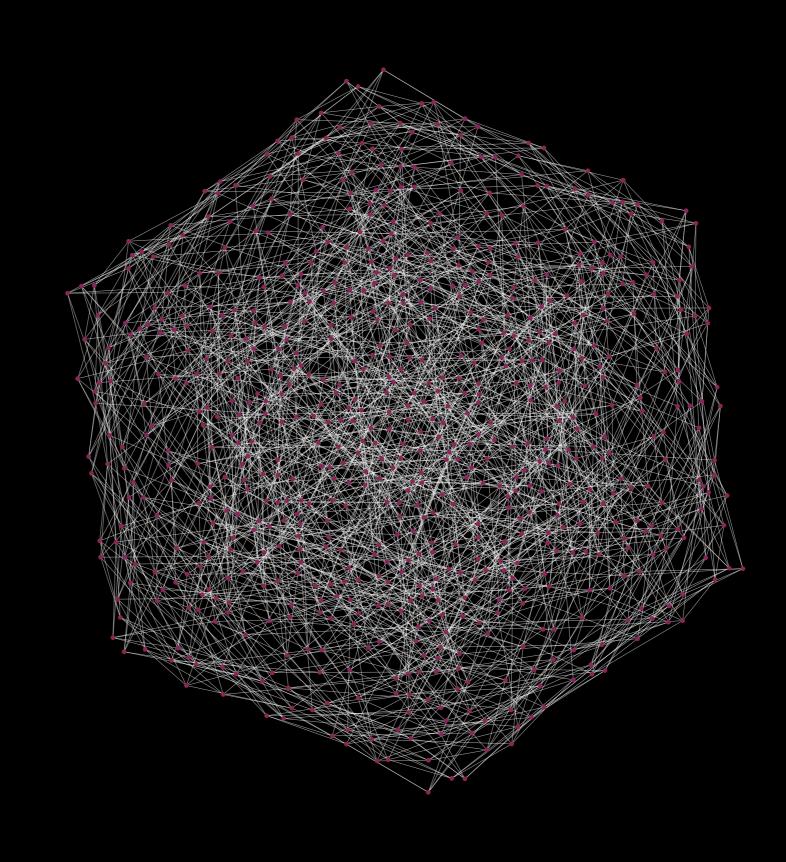


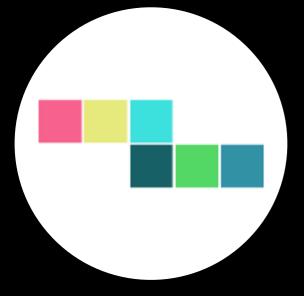


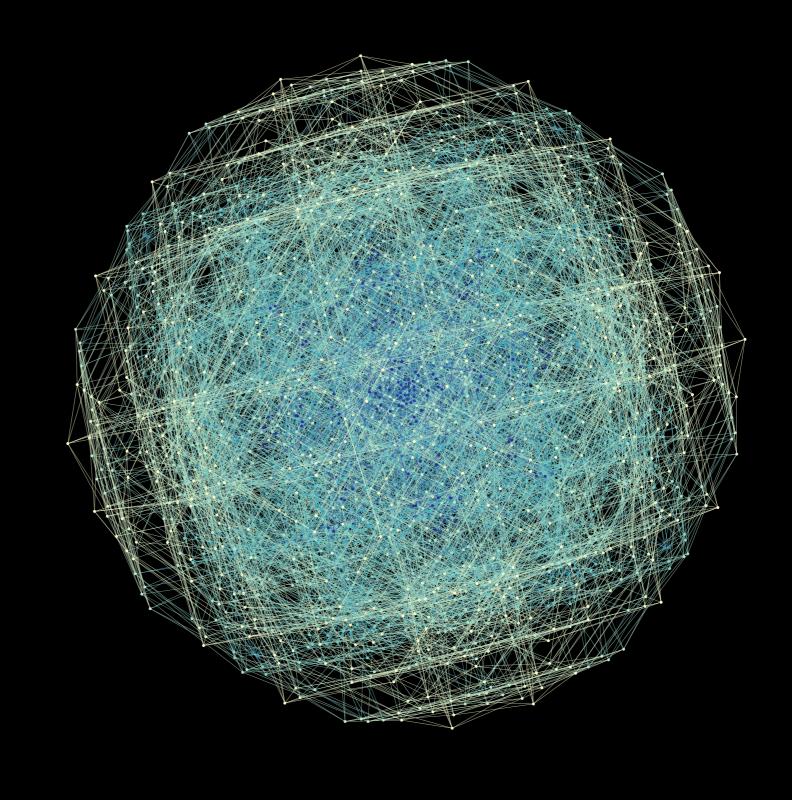


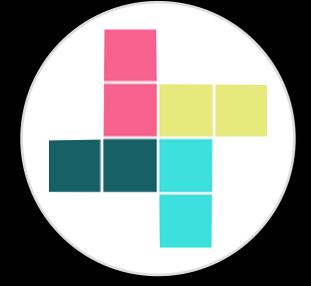


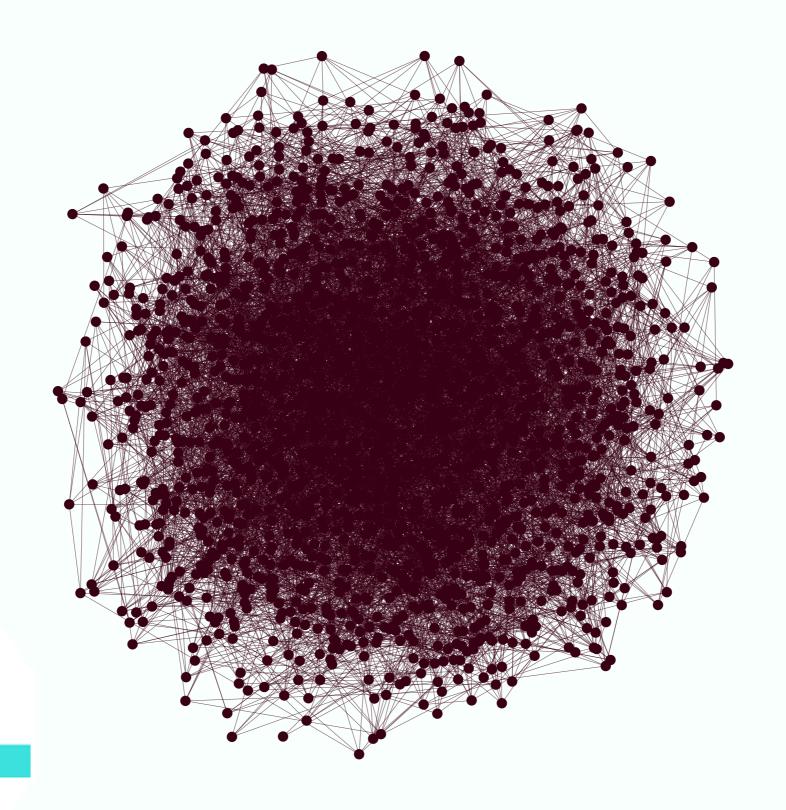


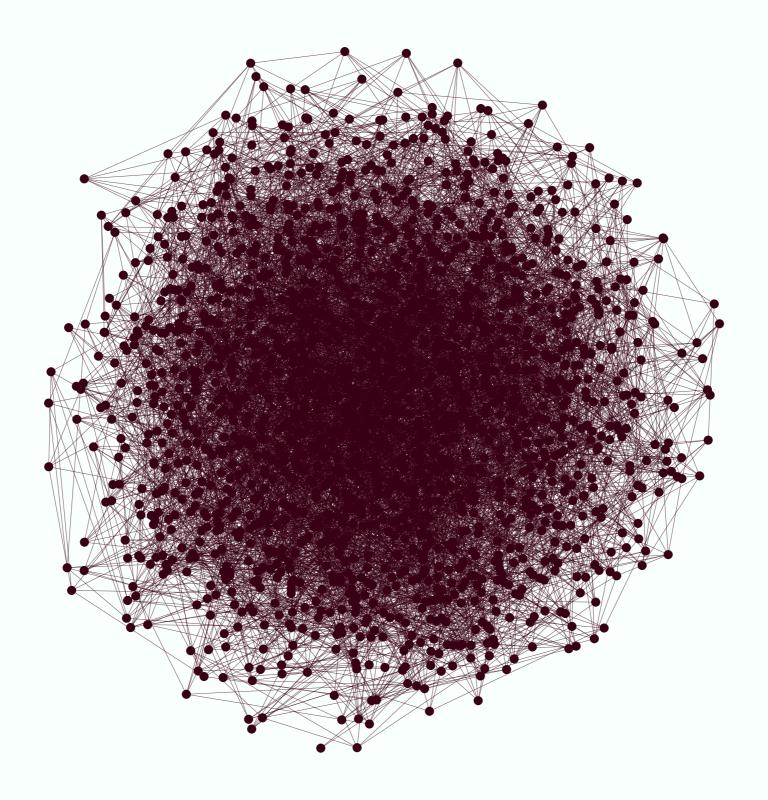


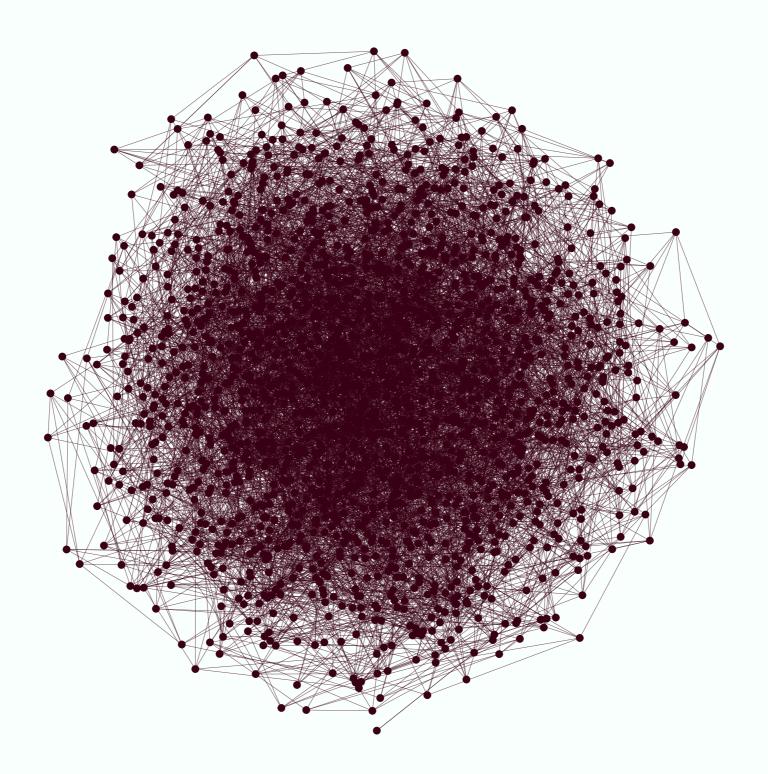


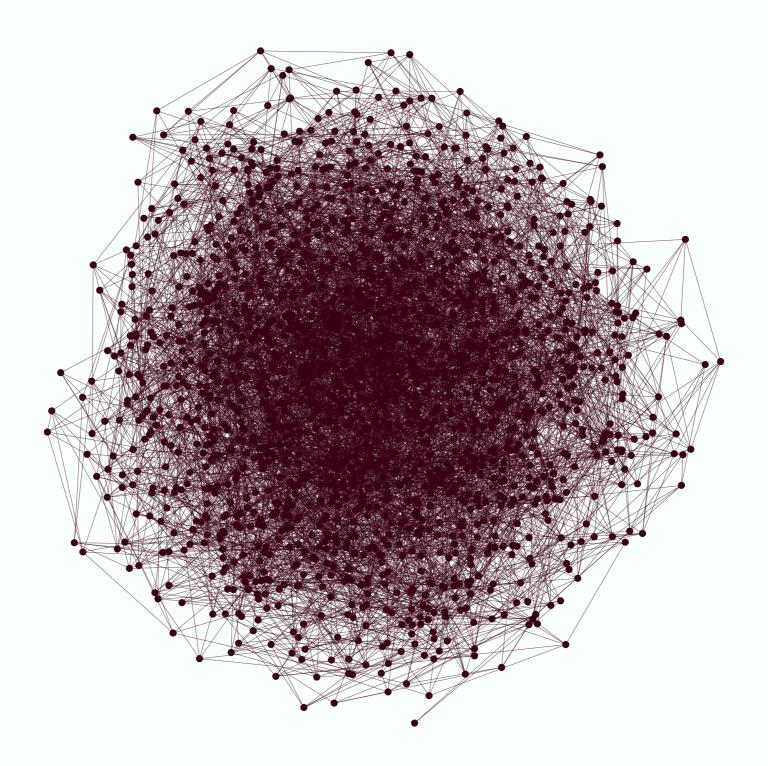


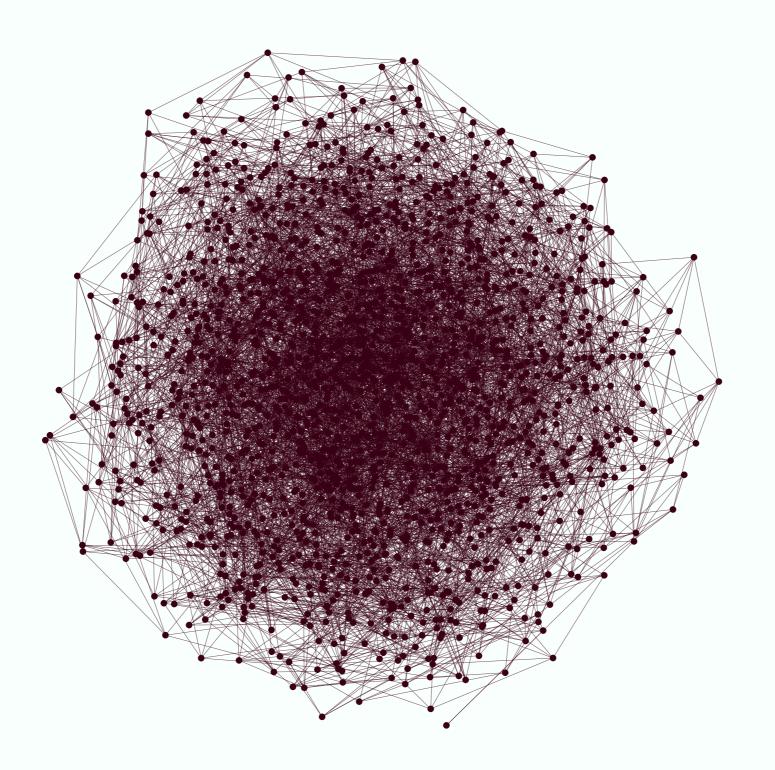


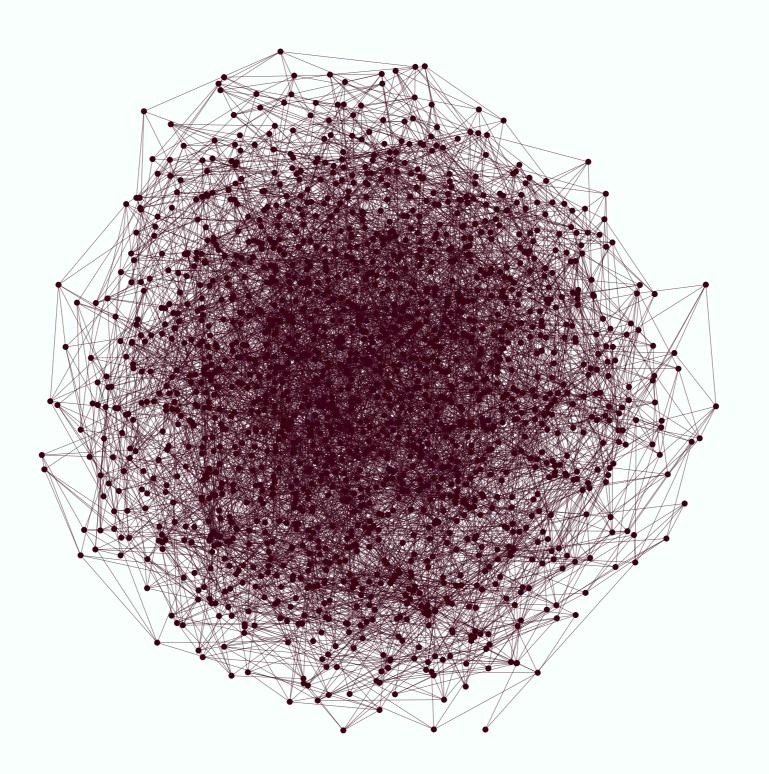


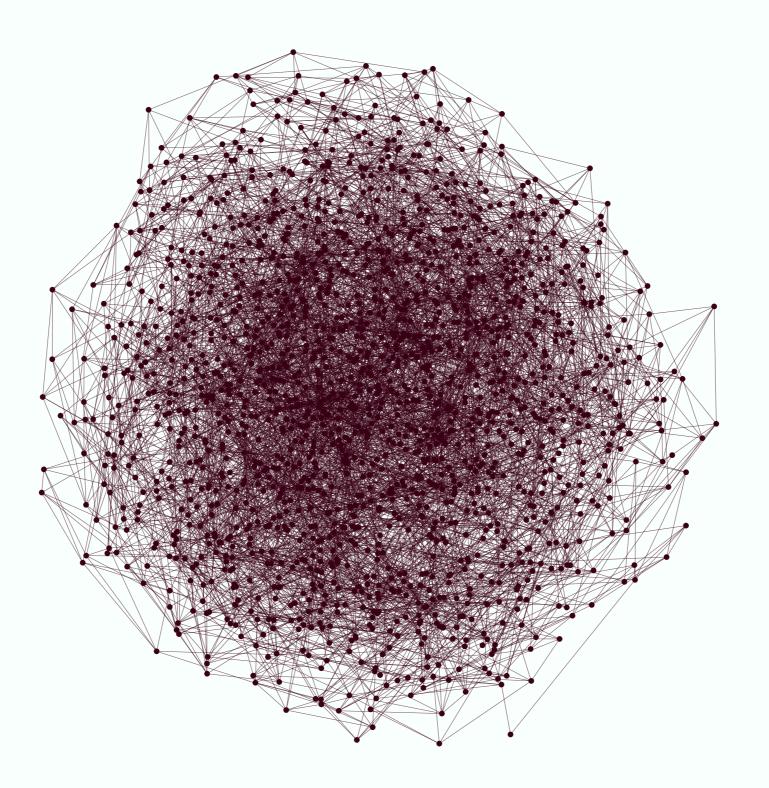


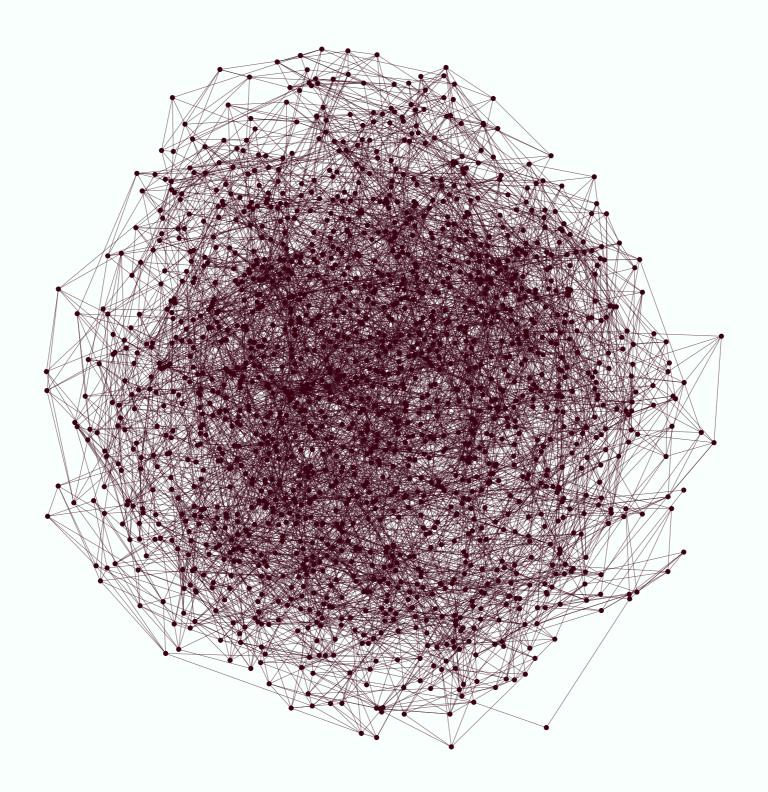


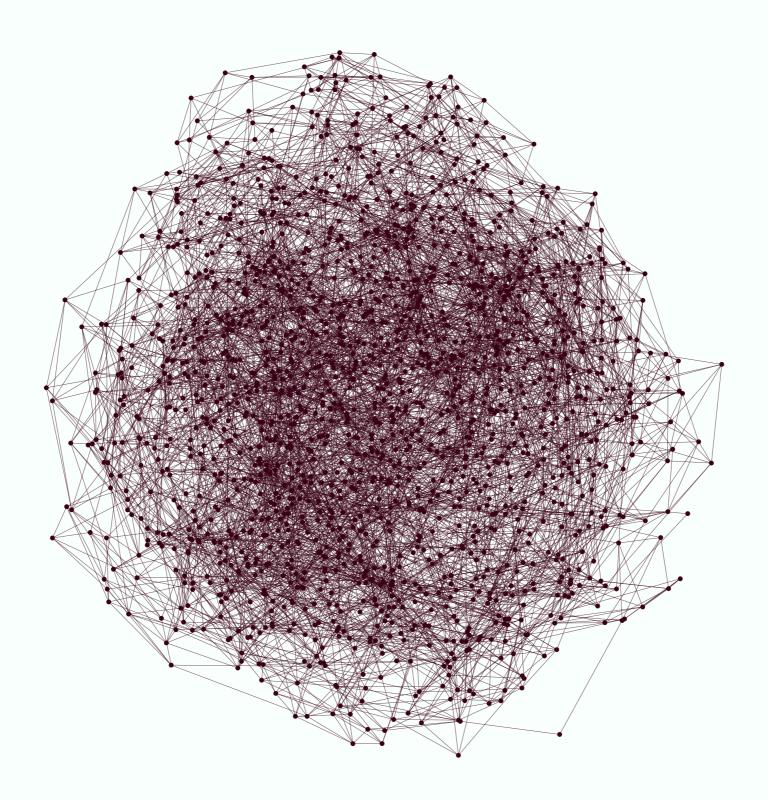


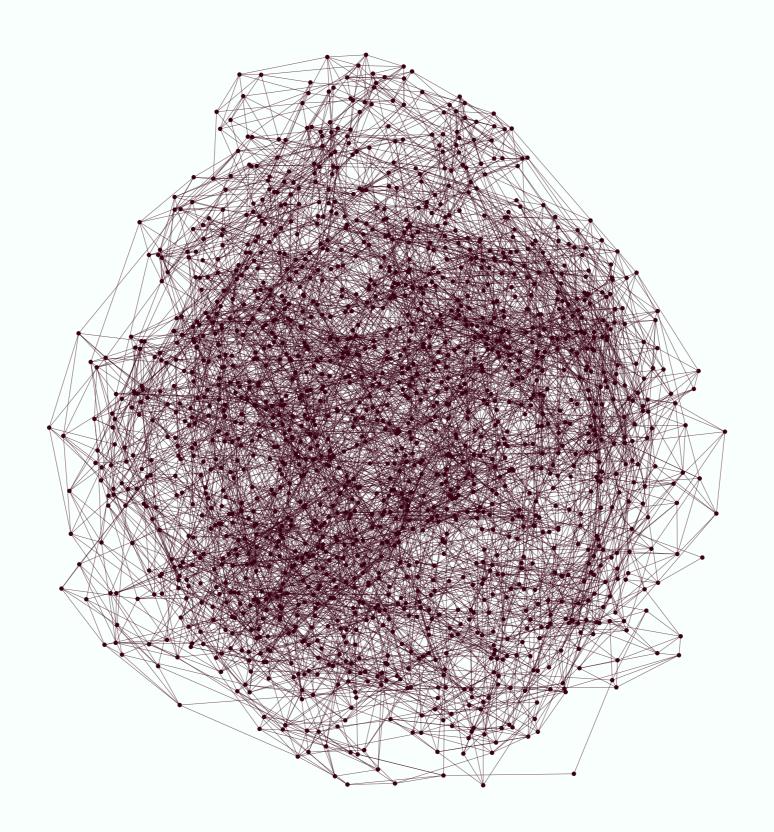


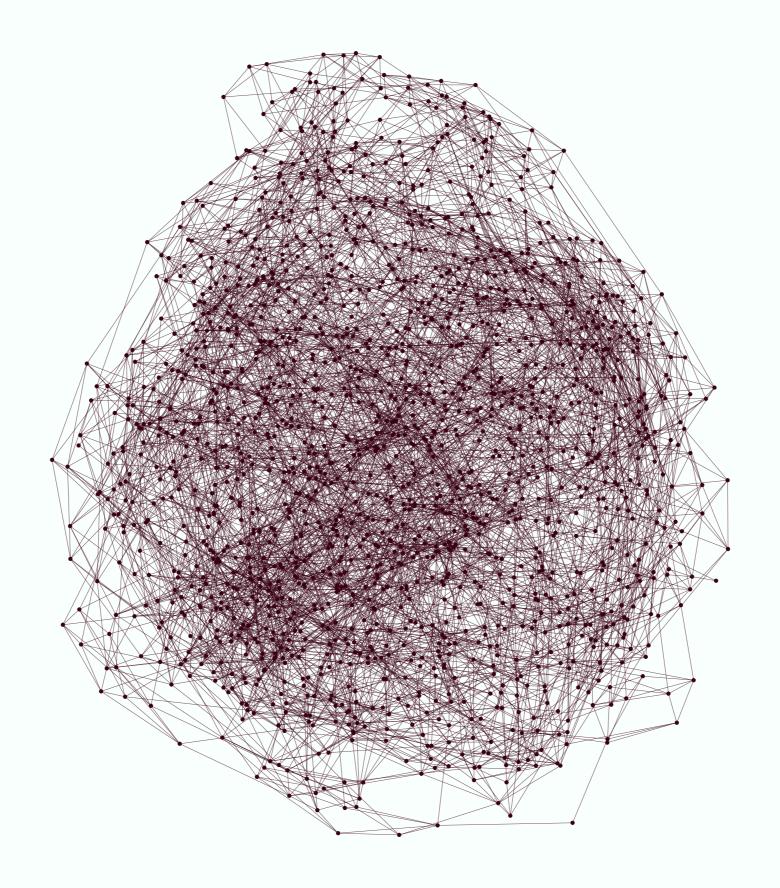


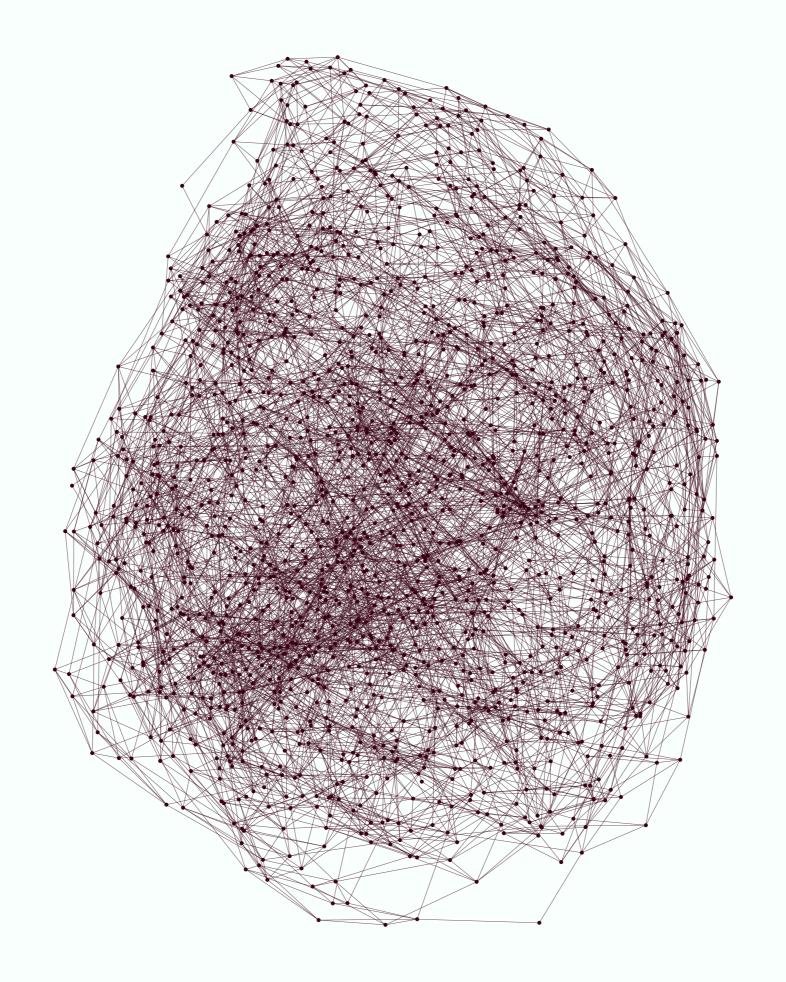


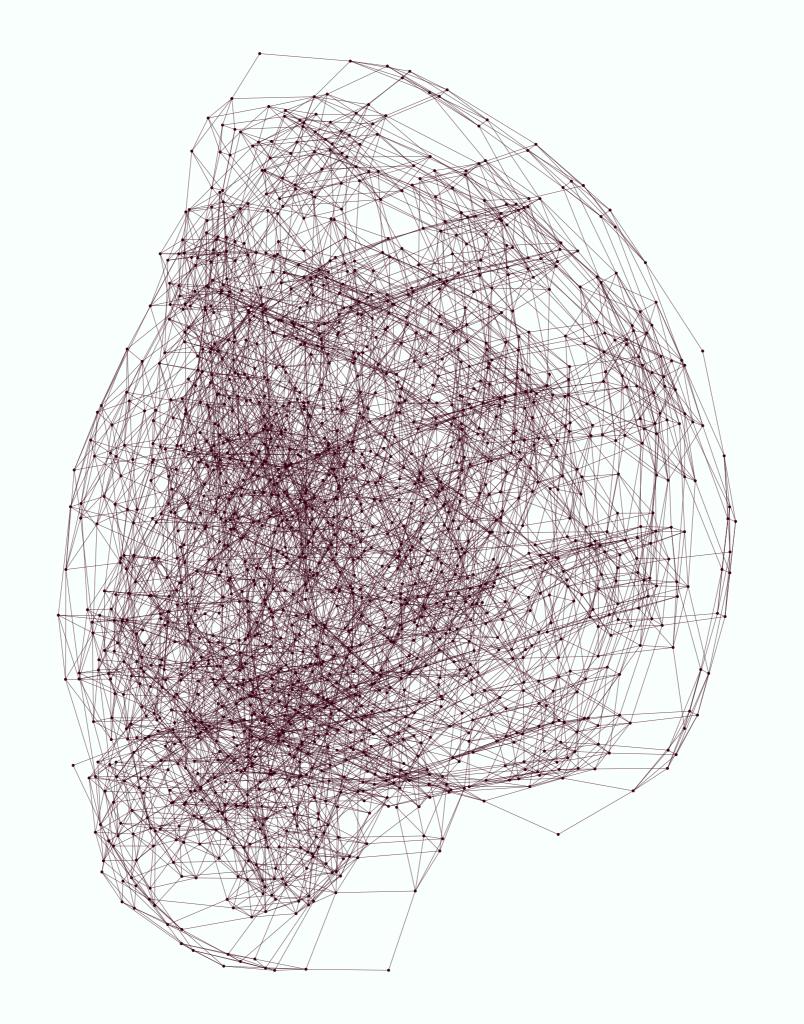


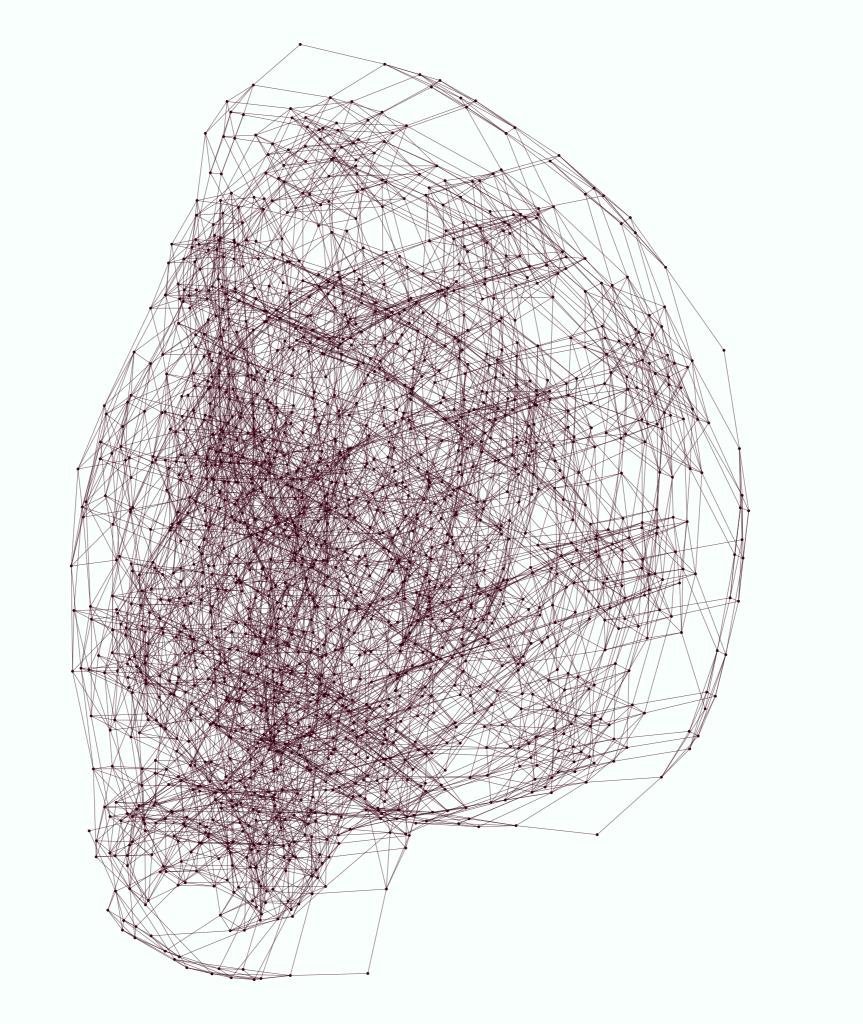


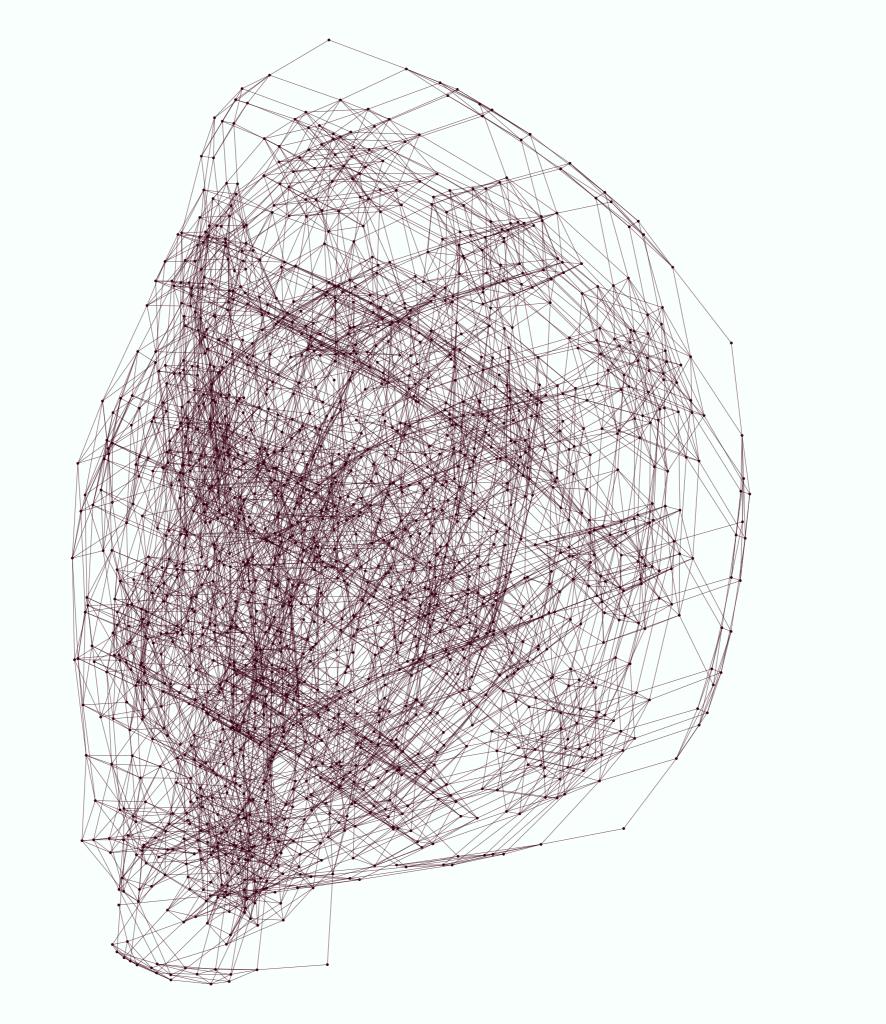


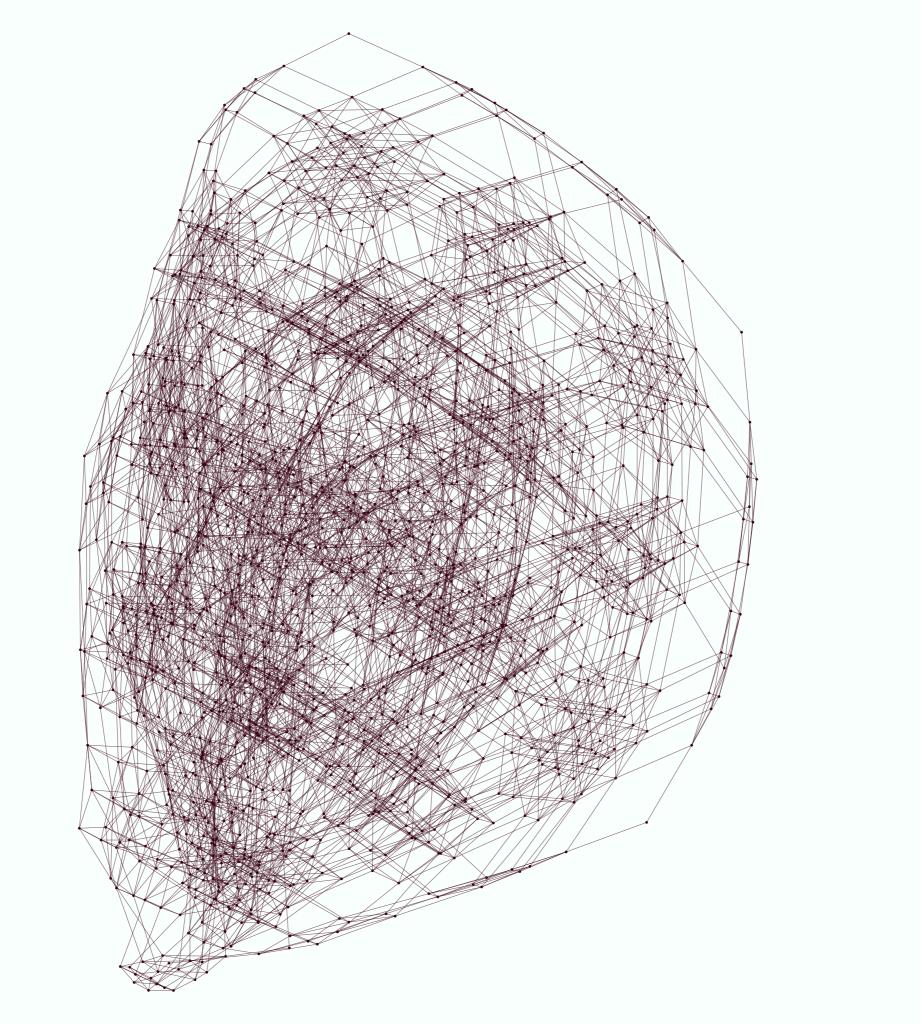


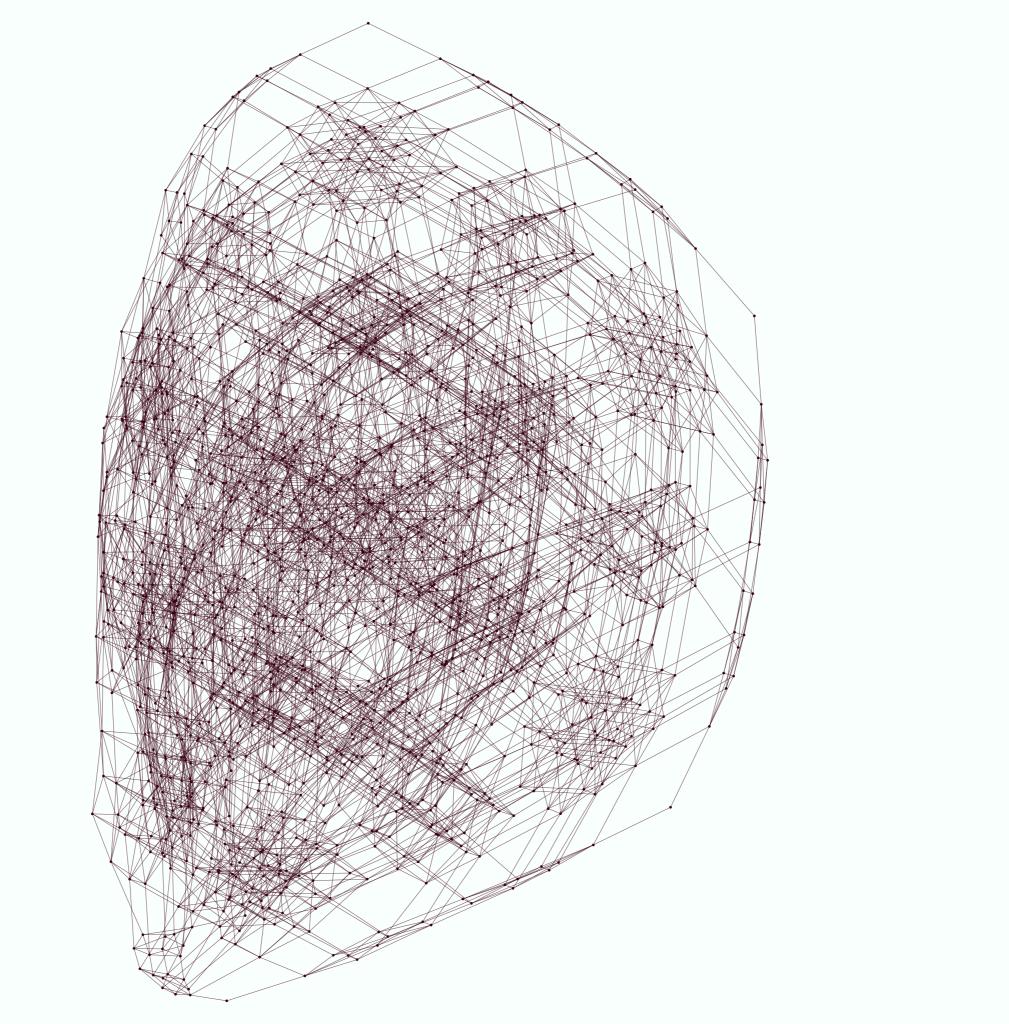


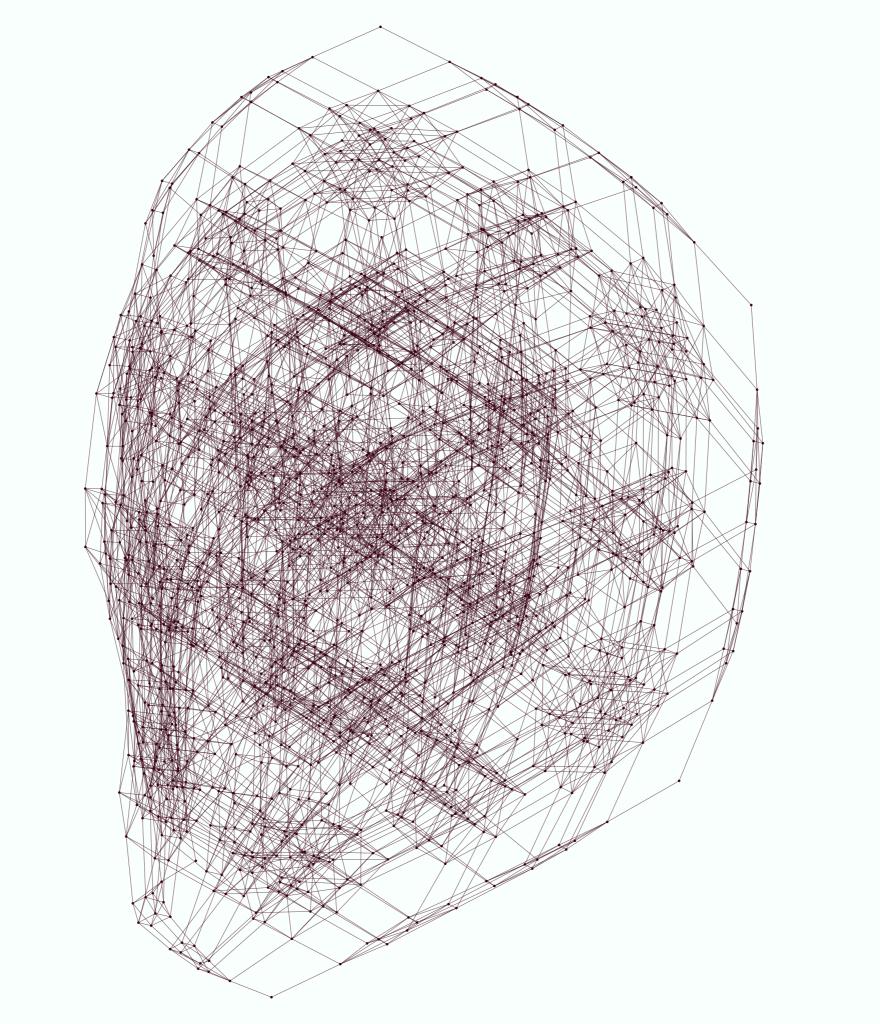


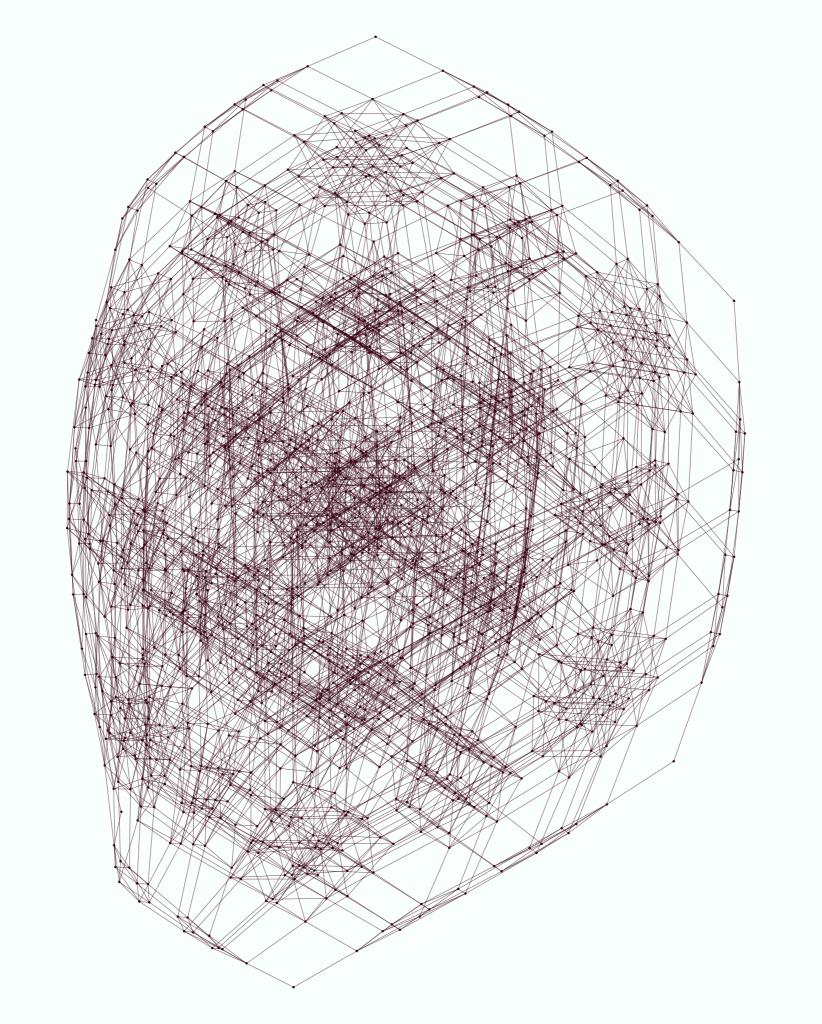


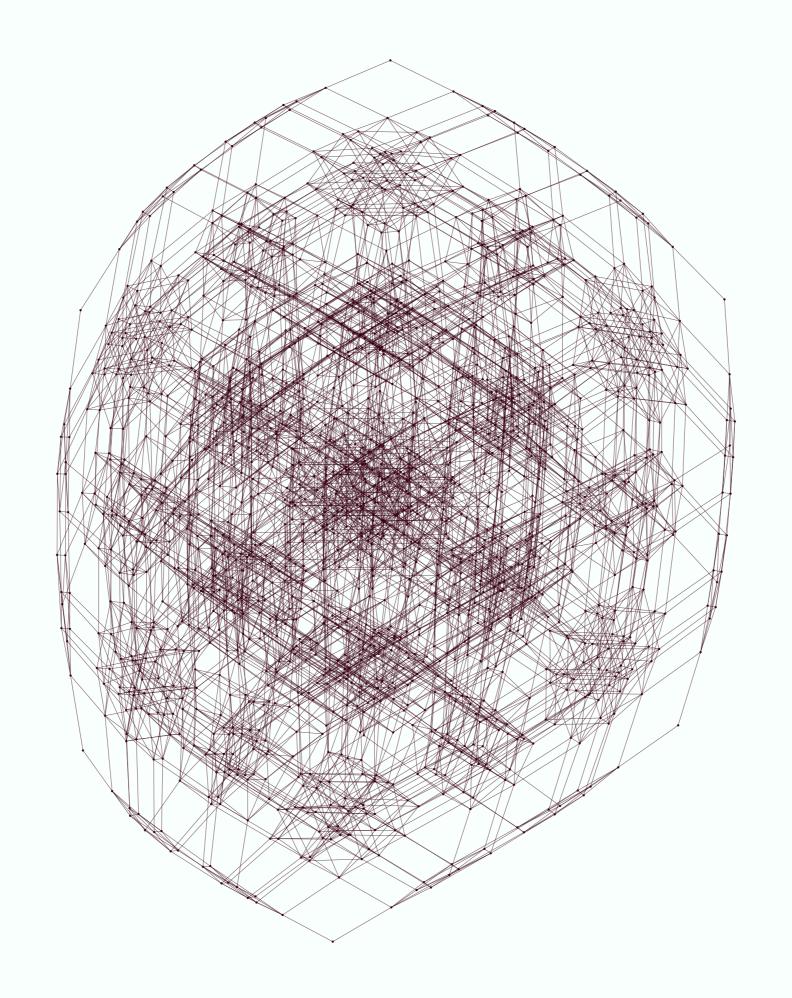


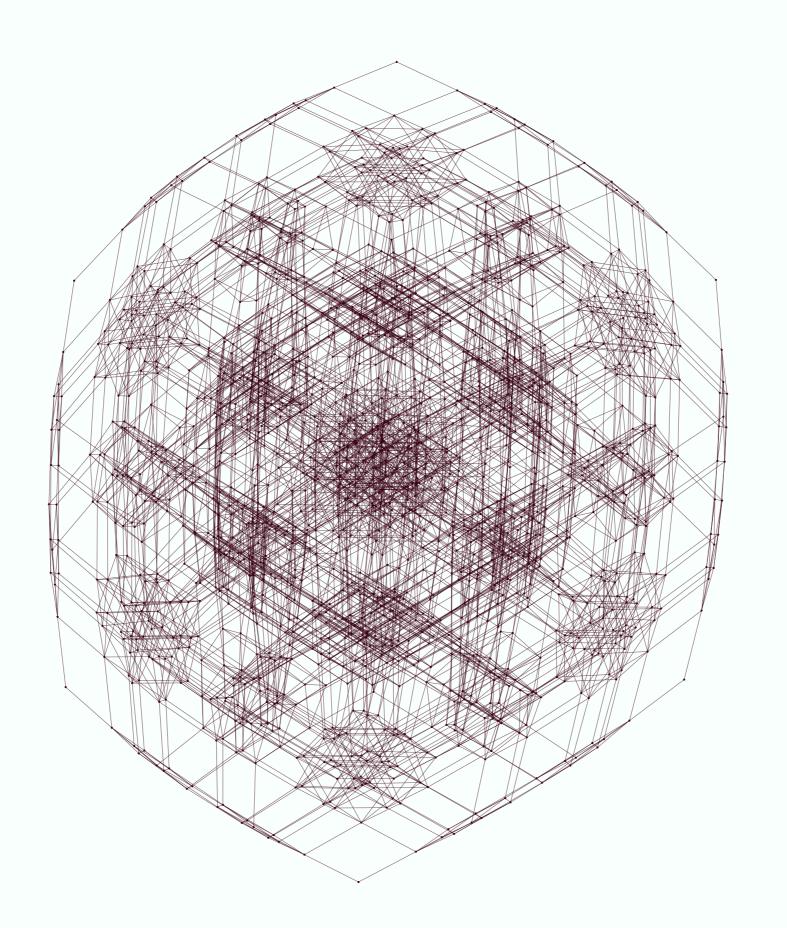


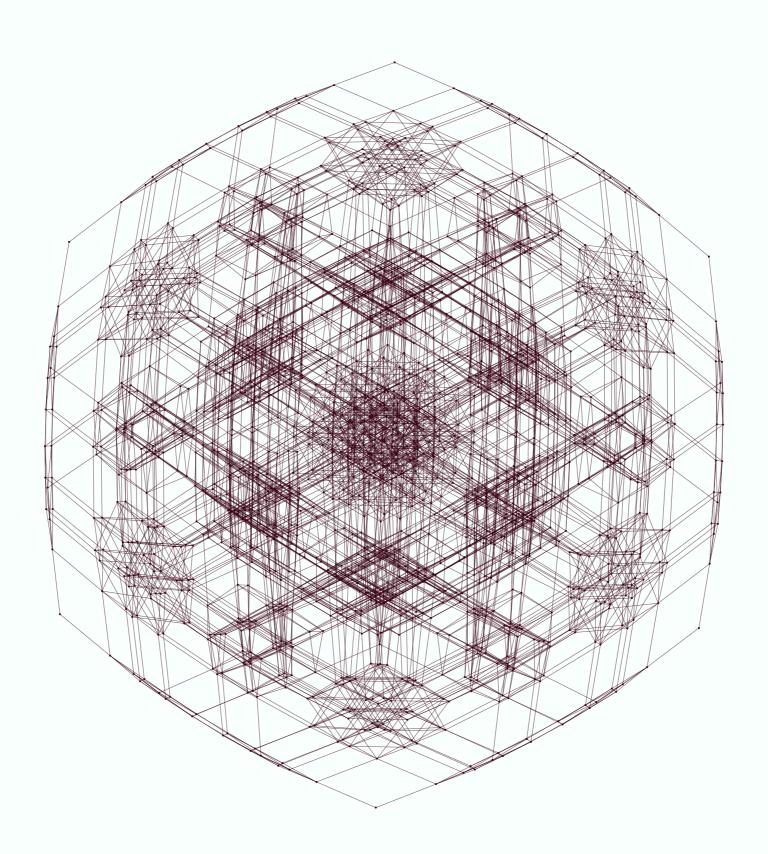


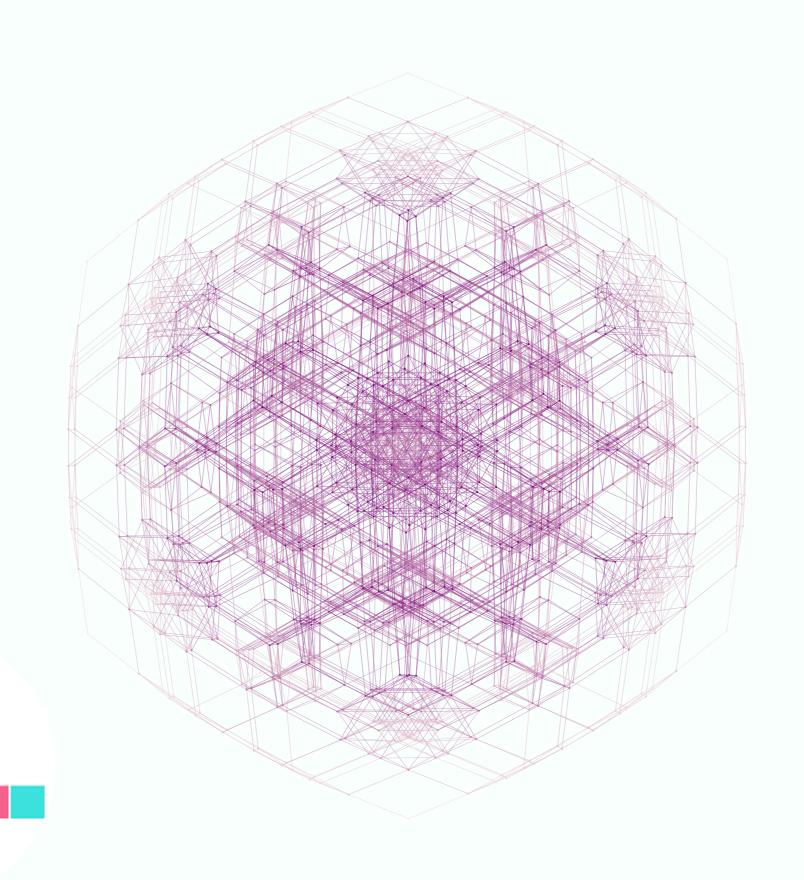


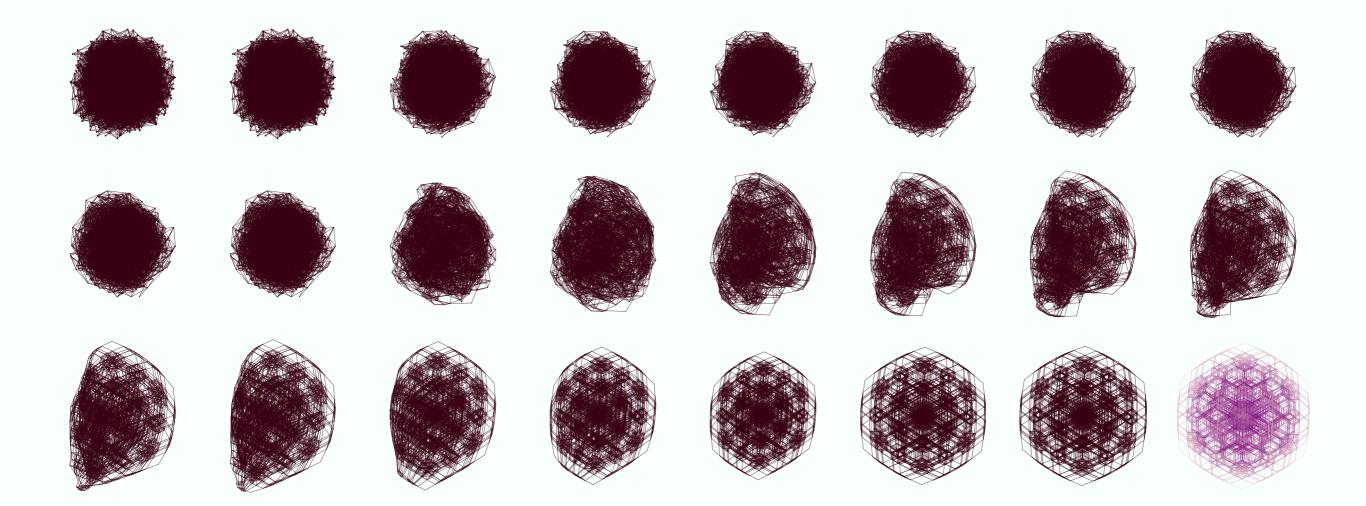


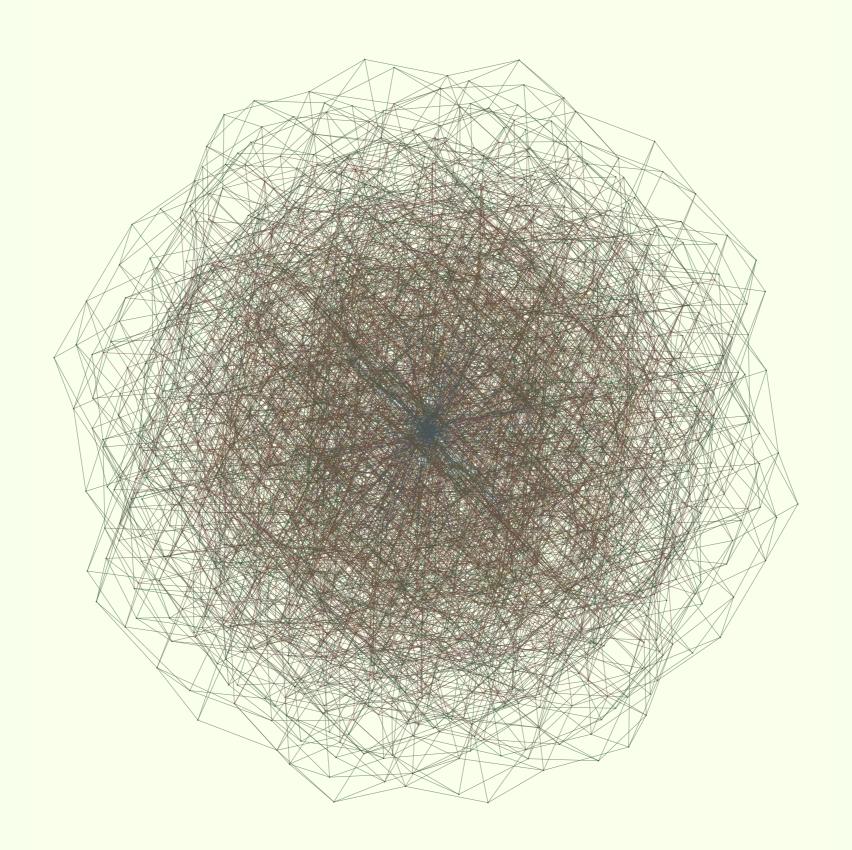


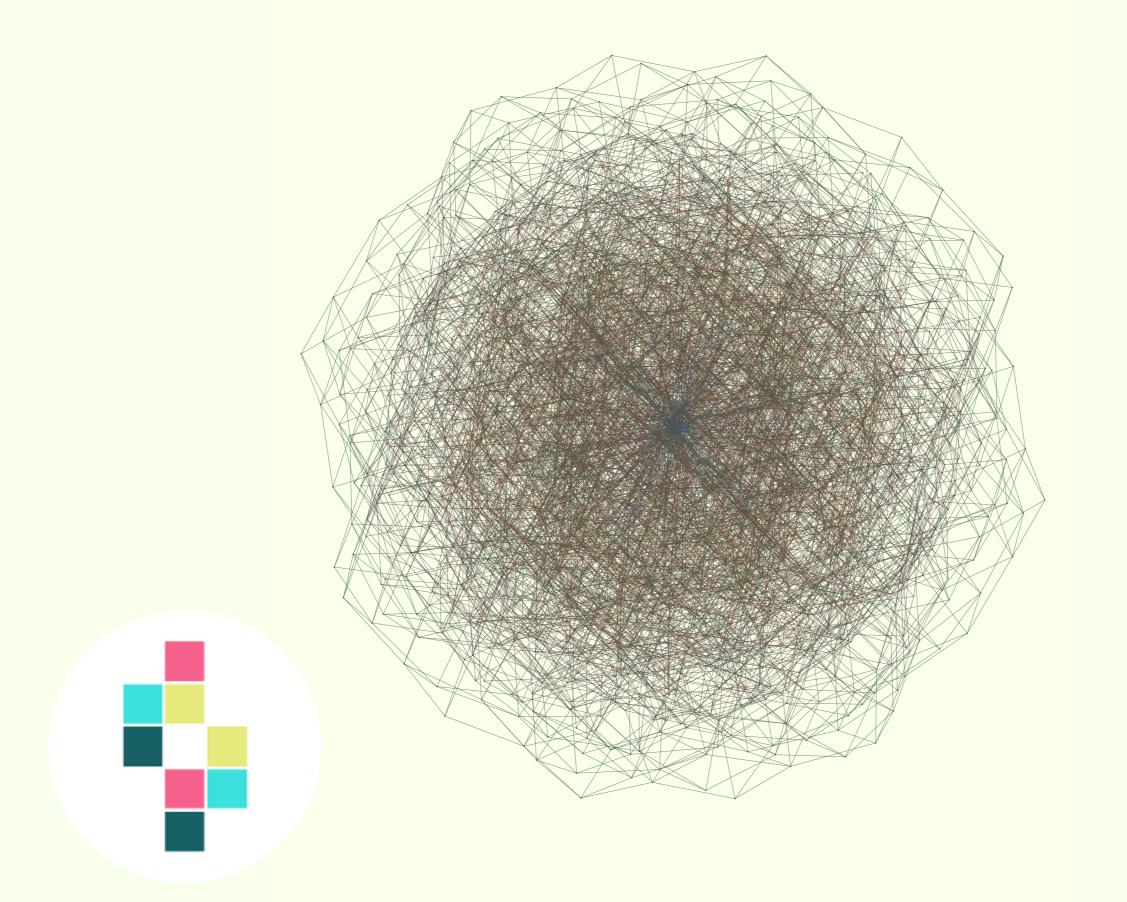












Math talks invariably bring joy. Sometimes it is when they end.

